Researchers Information System

日本語に切り替えるswitch to english

Tsutsumi, Fukumu

The HAKUBI Center for Advanced Research Program-Specific Assistant Professor

Tsutsumi, Fukumu
list
    Last Updated :2023/03/22

    Basic Information

    Academic Degree

    • 24 Mar. 2022
      東京大学博士(情報理工学)
    • 25 Mar. 2019
      東京大学修士(情報理工学)

    Academic Resume (Graduate Schools)

    • 東京大学, 大学院情報理工学系研究科修士課程コンピュータ科学専攻, 修了
    • 東京大学, 大学院情報理工学系研究科博士後期課程コンピュータ科学専攻, 修了

    Academic Resume (Undergraduate School/Majors)

    • 東京大学, 理学部情報科学科, 卒業

    ID,URL

    researchmap URL

    list
      Last Updated :2023/03/22

      Research

      Research Interests

      • machine learning
      • 機械学習

      Research Areas

      • Informatics, Statistical science

      Papers

      • Calibrated Surrogate Maximization of Dice.
        Marcus Nordström; Han Bao 0002; Fredrik Löfman; Henrik Hult; Atsuto Maki; Masashi Sugiyama
        Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020
      • Calibrated Surrogate Losses for Adversarially Robust Classification.
        Han Bao 0002; Clayton Scott; Masashi Sugiyama
        CoRR, 2020
      • Learning from Noisy Similar and Dissimilar Data.
        Soham Dan; Han Bao 0002; Masashi Sugiyama
        CoRR, 2020
      • Pairwise Supervision Can Provably Elicit a Decision Boundary.
        Han Bao 0002; Takuya Shimada; Liyuan Xu; Issei Sato; Masashi Sugiyama
        International Conference on Artificial Intelligence and Statistics(AISTATS), 2022
      • Learning from Noisy Similar and Dissimilar Data.
        Soham Dan; Han Bao 0002; Masashi Sugiyama
        Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, 2021
      • Fenchel-Young Losses with Skewed Entropies for Class-posterior Probability Estimation.
        Han Bao 0002; Masashi Sugiyama
        The 24th International Conference on Artificial Intelligence and Statistics(AISTATS), 2021
      • Classification From Pairwise Similarities/Dissimilarities and Unlabeled Data via Empirical Risk Minimization.
        Takuya Shimada; Han Bao 0002; Issei Sato; Masashi Sugiyama
        Neural Computation, 2021
      • Calibrated Surrogate Losses for Adversarially Robust Classification.
        Han Bao 0002; Clayton Scott; Masashi Sugiyama
        Conference on Learning Theory(COLT), 2020
      • Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification.
        Han Bao 0002; Masashi Sugiyama
        The 23rd International Conference on Artificial Intelligence and Statistics(AISTATS), 2020
      • Unsupervised Domain Adaptation Based on Source-Guided Discrepancy.
        Seiichi Kuroki; Nontawat Charoenphakdee; Han Bao; Junya Honda; Issei Sato; Masashi Sugiyama
        In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI2019), 2019, Peer-reviewed
      • Convex formulation of multiple instance learning from positive and unlabeled bags.
        Han Bao; Tomoya Sakai; Issei Sato; Masashi Sugiyama
        Neural networks : the official journal of the International Neural Network Society, Sep. 2018, Peer-reviewed
      • Similarity-based Classification: Connecting Similarity Learning to Binary Classification.
        Han Bao 0002; Takuya Shimada; Liyuan Xu; Issei Sato; Masashi Sugiyama
        CoRR, 2020

      Misc.

      • Classification from Pairwise Similarity and Unlabeled Data
        Han Bao; Gang Niu; Masashi Sugiyama
        35th International Conference on Machine Learning, ICML 2018, 2018, Peer-reviewed

      ページ上部へ戻る