Login
Search for faculty members
Search
Advanced Search
Search by organization
Tsutsumi, Fukumu
The HAKUBI Center for Advanced Research Program-Specific Assistant Professor
Basic Information
Research
list
Last Updated :2023/03/22
Basic Information
Academic Degree
24 Mar. 2022
東京大学博士(情報理工学)
25 Mar. 2019
東京大学修士(情報理工学)
Academic Resume (Graduate Schools)
東京大学
, 大学院情報理工学系研究科修士課程コンピュータ科学専攻, 修了
東京大学
, 大学院情報理工学系研究科博士後期課程コンピュータ科学専攻, 修了
Academic Resume (Undergraduate School/Majors)
東京大学
, 理学部情報科学科, 卒業
ID,URL
J-Global ID
201801010438043202
External link
https://hermite.jp/
researchmap URL
https://researchmap.jp/hanbao
list
Last Updated :2023/03/22
Research
Research Interests
machine learning
機械学習
Research Areas
Informatics
, Statistical science
Papers
Calibrated Surrogate Maximization of Dice.
Marcus Nordström; Han Bao 0002; Fredrik Löfman; Henrik Hult; Atsuto Maki; Masashi Sugiyama
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2020
Calibrated Surrogate Losses for Adversarially Robust Classification.
Han Bao 0002; Clayton Scott; Masashi Sugiyama
CoRR,
2020
Learning from Noisy Similar and Dissimilar Data.
Soham Dan; Han Bao 0002; Masashi Sugiyama
CoRR,
2020
Pairwise Supervision Can Provably Elicit a Decision Boundary.
Han Bao 0002; Takuya Shimada; Liyuan Xu; Issei Sato; Masashi Sugiyama
International Conference on Artificial Intelligence and Statistics(AISTATS),
2022
Learning from Noisy Similar and Dissimilar Data.
Soham Dan; Han Bao 0002; Masashi Sugiyama
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference,
2021
Fenchel-Young Losses with Skewed Entropies for Class-posterior Probability Estimation.
Han Bao 0002; Masashi Sugiyama
The 24th International Conference on Artificial Intelligence and Statistics(AISTATS),
2021
Classification From Pairwise Similarities/Dissimilarities and Unlabeled Data via Empirical Risk Minimization.
Takuya Shimada; Han Bao 0002; Issei Sato; Masashi Sugiyama
Neural Computation,
2021
Calibrated Surrogate Losses for Adversarially Robust Classification.
Han Bao 0002; Clayton Scott; Masashi Sugiyama
Conference on Learning Theory(COLT),
2020
Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification.
Han Bao 0002; Masashi Sugiyama
The 23rd International Conference on Artificial Intelligence and Statistics(AISTATS),
2020
Unsupervised Domain Adaptation Based on Source-Guided Discrepancy.
Seiichi Kuroki; Nontawat Charoenphakdee; Han Bao; Junya Honda; Issei Sato; Masashi Sugiyama
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI2019),
2019
,
Peer-reviewed
Convex formulation of multiple instance learning from positive and unlabeled bags.
Han Bao; Tomoya Sakai; Issei Sato; Masashi Sugiyama
Neural networks : the official journal of the International Neural Network Society,
Sep. 2018
,
Peer-reviewed
Similarity-based Classification: Connecting Similarity Learning to Binary Classification.
Han Bao 0002; Takuya Shimada; Liyuan Xu; Issei Sato; Masashi Sugiyama
CoRR,
2020
Misc.
Classification from Pairwise Similarity and Unlabeled Data
Han Bao; Gang Niu; Masashi Sugiyama
35th International Conference on Machine Learning, ICML 2018,
2018
,
Peer-reviewed
ページ上部へ戻る