Researchers Information System

日本語に切り替えるswitch to english

Mamitsuka, Hiroshi

Institute for Chemical Research (ICR) Professor

Mamitsuka, Hiroshi
list
    Last Updated :2023/09/21

    Basic Information

    Affiliated programs (koza)

    • Graduate School of Pharmaceutical Sciences, 医薬創成情報科学専攻 医薬創成情報科学講座, 教授

    Concurrent Affiliation

    • Center for the Promotion of Interdisciplinary Education and Research (C-PiER), 統合複雑系科学国際研究ユニット

    Academic Degree

    • Master of Engineering (University of Tokyo)
    • PhD in Information Sciences (University of Tokyo)

    Research History

    • From Apr. 2005, To Present
      Kyoto University, Bioinformatics Center, Institute for Chemical Research, Professor
    • From Apr. 2002, To Mar. 2005
      Kyoto University, SGI Donation Laboratory, Institute for Chemical Research, Visiting Associate Professor
    • From Apr. 1991, To Mar. 2002
      NEC Corporation, Research Staff Member

    ID,URL

    Website(s) (URL(s))

    researchmap URL

    list
      Last Updated :2023/09/21

      Research

      Research Topics, Overview of the research

      • Research Topics

        Machine learning research for accelerating / advancing science and engineering, particularly life sciences
      • Overview of the research

        My machine learning research has two aspects, being featured by "data": 1) graphs and networks: a typical and emerging graph in our present society is social networks in our life, and also a variety of graphs in modern sciences, for instance, gene regulatory networks, medical life pathways and chemical (or molecular) structures. I have developed machine learning methods to obtain knowledge or information from this type of graphs. 2) data integration: in general, any entity can be found in not only one but multiple data sources. For example, you are connected by social networks, and your purchase record in an e-commerce site would be kept in the e-commerce company. This is also the case with your online surfing record, such as your seen movies at youtube. Then your demographic data, such as age, sex, the region in which you were born and currently you are living, can be saved in many places on-line. So we can use your data from many sources. The question is how we can integrate this type of different and diverse data to build a good machine learner to predict your unforeseen future. To answer this question, I have done research on data-integrative machine learning.

      Research Interests

      • data-driven science
      • bioinformatics
      • machine learning

      Research Areas

      • Informatics, Intelligent informatics

      Papers

      • Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer
        Zhirui Liao; Lei Xie; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 28 Dec. 2022, Peer-reviewed
      • Central-Smoothing Hypergraph Neural Networks for Predicting Drug–Drug Interactions
        Duc Anh Nguyen; Canh Hao Nguyen; Hiroshi Mamitsuka
        IEEE Transactions on Neural Networks and Learning Systems, 2023
      • DeepMHCII: A novel binding core-Aware deep interaction model for accurate MHC-II peptide binding affinity prediction
        Ronghui You; Wei Qu; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 01 Jul. 2022, Peer-reviewed
      • SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
        Duc Anh Nguyen; Canh Hao Nguyen; Peter Petschner; Hiroshi Mamitsuka
        Bioinformatics, 24 Jun. 2022, Peer-reviewed, Last author
      • HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations
        Lizhi Liu; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 01 Feb. 2022, Peer-reviewed
      • Drug3D-DTI: Improved Drug-target Interaction Prediction by Incorporating Spatial Information of Small Molecules
        Zhirui Liao; Xiaodi Huang; Hiroshi Mamitsuka; Shanfeng Zhu
        2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 09 Dec. 2021, Peer-reviewed
      • Crop loss identification at field parcel scale using satellite remote sensing and machine learning
        Santosh Hiremath; Samantha Wittke; Taru Palosuo; Jere Kaivosoja; Fulu Tao; Maximilian Proll; Eetu Puttonen; Pirjo Peltonen-Sainio; Pekka Marttinen; Hiroshi Mamitsuka
        PLoS ONE, Dec. 2021, Peer-reviewed, Last author
      • Machine learning approaches for drug combination therapies
        Betül Güvenç Paltun; Samuel Kaski; Hiroshi Mamitsuka
        Briefings in Bioinformatics, 06 Aug. 2021, Peer-reviewed, Last author
      • DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
        Ronghui You; Shuwei Yao; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 04 Aug. 2021, Peer-reviewed
      • Learning subtree pattern importance for Weisfeiler-Lehman based graph kernels
        Dai Hai Nguyen; Canh Hao Nguyen; Hiroshi Mamitsuka
        Machine Learning, 13 Jun. 2021, Peer-reviewed
      • BERTMeSH: deep contextual representation learning for large-scale high-performance MeSH indexing with full text
        Ronghui You; Yuxuan Liu; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 05 May 2021, Peer-reviewed
      • HPOFiller: identifying missing protein–phenotype associations by graph convolutional network
        Lizhi Liu; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 06 Apr. 2021, Peer-reviewed
      • Reshaped tensor nuclear norms for higher order tensor completion
        Kishan Wimalawarne; Hiroshi Mamitsuka
        Machine Learning, Mar. 2021, Peer-reviewed
      • XGSEA: CROSS-species gene set enrichment analysis via domain adaptation
        Menglan Cai; Canh Hao Nguyen; Hiroshi Mamitsuka; Limin Li
        Briefings in Bioinformatics, 30 Jan. 2021, Peer-reviewed
      • Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches
        Betül Güvenç Paltun; Hiroshi Mamitsuka; Samuel Kaski
        Briefings in Bioinformatics, 18 Jan. 2021, Peer-reviewed
      • A survey on adverse drug reaction studies: data, tasks and machine learning methods
        Duc Anh Nguyen; Canh Hao Nguyen; Hiroshi Mamitsuka
        Briefings in Bioinformatics, 18 Jan. 2021, Peer-reviewed, Last author
      • Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean
        Hiroto Kaneko; Romain Blanc-Mathieu; Hisashi Endo; Samuel Chaffron; Tom O. Delmont; Morgan Gaia; Nicolas Henry; Rodrigo Hernández-Velázquez; Canh Hao Nguyen; Hiroshi Mamitsuka; Patrick Forterre; Olivier Jaillon; Colomban de Vargas; Matthew B. Sullivan; Curtis A. Suttle; Lionel Guidi; Hiroyuki Ogata
        iScience, Jan. 2021, Peer-reviewed
      • Machine Learning for Metabolic Identification
        Dai Hai Nguyen; Canh Hao Nguyen; Hiroshi Mamitsuka
        Creative Complex Systems, 2021, Invited, Last author
      • DIVERSE: Bayesian Data IntegratiVE Learning for Precise Drug ResponSE Prediction
        Betul Guvenc Paltun; Samuel Kaski; Hiroshi Mamitsuka
        IEEE/ACM Transactions on Computational Biology and Bioinformatics, 01 Jul. 2022, Peer-reviewed, Last author
      • HPOLabeler: improving prediction of human protein–phenotype associations by learning to rank
        Lizhi Liu; Xiaodi Huang; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 30 Jul. 2020, Peer-reviewed
      • Scalable Probabilistic Matrix Factorization with Graph-Based Priors
        Jonathan Strahl; Jaakko Peltonen; Hirsohi Mamitsuka; Samuel Kaski
        Proceedings of the AAAI Conference on Artificial Intelligence, 03 Apr. 2020, Peer-reviewed
      • Efficiently Enumerating Substrings with Statistically Significant Frequencies of Locally Optimal Occurrences in Gigantic String
        Atsuyoshi Nakamura; Ichigaku Takigawa; Hiroshi Mamitsuka
        Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2020), 03 Apr. 2020, Peer-reviewed
      • FullMeSH: Improving large-scale MeSH indexing with full text
        Suyang Dai; Ronghui You; Zhiyong Lu; Xiaodi Huang; Hiroshi Mamitsuka; Shanfeng Zhu
        Bioinformatics, 01 Mar. 2020, Peer-reviewed
      • Scaled coupled norms and coupled higher-order tensor completion
        Kishan Wimalawarne; Makoto Yamada; Hiroshi Mamitsuka
        Neural Computation, 01 Feb. 2020, Peer-reviewed
      • Learning on Hypergraphs with Sparsity
        Hao Canh Nguyen; Hiroshi Mamitsuka
        IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, Peer-reviewed
      • HPOAnnotator: improving large-scale prediction of HPO annotations by low-rank approximation with HPO semantic similarities and multiple PPI networks
        Junning Gao; Lizhi Liu; Shuwei Yao; Xiaodi Huang; Hiroshi Mamitsuka; Shanfeng Zhu
        BMC Medical Genomics, 23 Dec. 2019, Peer-reviewed
      • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
        Michael P. Menden; Dennis Wang; Mike J. Mason; Bence Szalai; Krishna C. Bulusu; Yuanfang Guan; Thomas Yu; Jaewoo Kang; Minji Jeon; Russ Wolfinger; Tin Nguyen; Mikhail Zaslavskiy; Jordi Abante; Barbara Schmitz Abecassis; Nanne Aben; Delasa Aghamirzaie; Tero Aittokallio; Farida S. Akhtari; Bissan Al-lazikani; Tanvir Alam; Amin Allam; Chad Allen; Mariana Pelicano de Almeida; Doaa Altarawy; Vinicius Alves; Alicia Amadoz; Benedict Anchang; Albert A. Antolin; Jeremy R. Ash; Victoria Romeo Aznar; Wail Ba-alawi; Moeen Bagheri; Vladimir Bajic; Gordon Ball; Pedro J. Ballester; Delora Baptista; Christopher Bare; Mathilde Bateson; Andreas Bender; Denis Bertrand; Bhagya Wijayawardena; Keith A. Boroevich; Evert Bosdriesz; Salim Bougouffa; Gergana Bounova; Thomas Brouwer; Barbara Bryant; Manuel Calaza; Alberto Calderone; Stefano Calza; Stephen Capuzzi; Jose Carbonell-Caballero; Daniel Carlin; Hannah Carter; Luisa Castagnoli; Remzi Celebi; Gianni Cesareni; Hyeokyoon Chang; Guocai Chen; Haoran Chen; Huiyuan Chen; Lijun Cheng; Ariel Chernomoretz; Davide Chicco; Kwang Hyun Cho; Sunghwan Cho; Daeseon Choi; Jaejoon Choi; Kwanghun Choi; Minsoo Choi; Martine De Cock; Elizabeth Coker; Isidro Cortes-Ciriano; Miklós Cserzö; Cankut Cubuk; Christina Curtis; Dries Van Daele; Cuong C. Dang; Tjeerd Dijkstra; Joaquin Dopazo; Sorin Draghici; Anastasios Drosou; Michel Dumontier; Friederike Ehrhart; Fatma Elzahraa Eid; Mahmoud ElHefnawi; Haitham Elmarakeby; Bo van Engelen; Hatice Billur Engin; Iwan de Esch; Chris Evelo; Andre O. Falcao; Sherif Farag; Carlos Fernandez-Lozano; Kathleen Fisch; Asmund Flobak; Chiara Fornari; Amir B.K. Foroushani; Donatien Chedom Fotso; Denis Fourches
        Nature Communications, 01 Dec. 2019, Peer-reviewed
      • AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification.
        Ronghui You; Zihan Zhang; Ziye Wang; Suyang Dai; Hiroshi Mamitsuka; Shanfeng Zhu
        Proceedings of the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS 2019), Dec. 2019, Peer-reviewed
      • Modelling G×E with historical weather information improves genomic prediction in new environments
        Gillberg Jussi; Marttinen Pekka; Mamitsuka Hiroshi; Kaski Samuel
        Bioinformatics, Oct. 2019, Peer-reviewed
      • Multiplicative Sparse Feature Decomposition for Efficient Multi-View Multi-Task Learning
        Lu Sun; Canh Hao Nguyen; Hiroshi Mamitsuka
        Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Aug. 2019, Peer-reviewed
      • Fast and Robust Multi-View Multi-Task Learning via Group Sparsity
        Sun Lu; Nguyen Canh Hao; Mamitsuka Hiroshi
        Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019), Aug. 2019, Peer-reviewed
      • Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean
        Romain Blanc-Mathieu; Hiroto Kaneko; Hisashi Endo; Samuel Chaffron; Rodrigo Hern{\'{a; ndez-Vel{\'{a } }zquez; Canh Hao Nguyen; Hiroshi Mamitsuka; Nicolas Henry; Colomban de Vargas; Matthew B. Sullivan; Curtis A. Suttle; Lionel Guidi; Hiroyuki Ogata
        Jul. 2019, Peer-reviewed
      • A Metropolis-Hastings Sampling of Subtrees in Graphs
        Eid Abdelrahman Munther; Mamitsuka Hiroshi; Wicker Nicolas
        Austrian Journal of Statistics, Jul. 2019, Peer-reviewed
      • A p-Laplacian Random Walk: Application to Video Games
        Wicker Nicolas; Nguyen Canh Hao; Mamitsuka Hiroshi
        Austrian Journal of Statistics, Jul. 2019, Peer-reviewed
      • NetGO: improving large-scale protein function prediction with massive network information
        You Ronghui; Yao Shuwei; Xiong Yi; Huang Xiaodi; Sun Fengzhu; Mamitsuka Hiroshi; Zhu Shanfeng
        Nucleic Acids Research, Jul. 2019, Peer-reviewed
      • ADAPTIVE: leArning DAta-dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra
        Nguyen Dai Hai; Nguyen Canh Hao; Mamitsuka Hiroshi
        Bioinformatics (Proceedings of the 27th International Conference on Intelligent Systems for Molecular Biology (ISMB/ECCB 2019)), Jul. 2019, Peer-reviewed
      • Machine Learning for Marketing
        Hiroshi Mamitsuka
        Jun. 2019
      • Editorial
        Shuigeng Zhou; Yi-Ping Phoebe Chen; Hiroshi Mamitsuka
        IEEE/ACM Transactions on Computational Biology and Bioinformatics, Mar. 2019, Peer-reviewed
      • CalCleaveMKL: a Tool for Calpain Cleavage Prediction.
        duVerle DA; Mamitsuka H
        Methods in molecular biology (Clifton, N.J.), 2019, Peer-reviewed
      • Textbook of Machine Learning and Data Mining (with Bioinformatics Applications)
        Hiroshi Mamitsuka
        Global Data Science Publishing, Sep. 2018, Peer-reviewed
      • Recent Advances and Prospects of Computational Methods for Metabolite Identification: A Review with Emphasis on Machine Learning Approaches
        Dai Hai Nguyen; Canh Hao Nguyen; Hiroshi Mamitsuka
        Briefings in Bioinformatics, Aug. 2018, Peer-reviewed
      • Convex Coupled Matrix and Tensor Completion
        Kishan Wimalawarne; Makoto Yamada; Hiroshi Mamitsuka
        Neural Computation, Aug. 2018, Peer-reviewed
      • Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data
        Makoto Yamada; Jiliang Tang; Jose Lugo-Martinez; Ermin Hodzic; Raunak Shrestha; Avishek Saha; Hua Ouyang; Dawei Yin; Hiroshi Mamitsuka; Cenk Sahinalp; Predrag Radivojac; Filippo Menczer; Yi Chang
        IEEE Transactions on Knowledge and Data Engineering, 01 Jul. 2018, Peer-reviewed
      • SIMPLE: Sparse Interaction Model over Peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra
        Dai Hai Nguyen; Canh Hao Nguyen; Mamitsuka Hiroshi
        Bioinformatics (Proceedings of the 26th International Conference on Intelligent Systems for Molecular Biology (ISMB 2018)), Jun. 2018, Peer-reviewed
      • GOLabeler: Improving Sequence-based Large-scale Protein Function Prediction by Learning to Rank
        You Ronghui; Zhang Zihan; Xiong Yi; Sun Fengzhu; Mamitsuka Hiroshi; Zhu Shanfeng
        Bioinformatics, Mar. 2018, Peer-reviewed
      • AiProAnnotator: Low-rank Approximation with network side information for high-performance, large-scale human Protein abnormality Annotator
        Gao Junning; Yao Shuwei; Mamitsuka Hiroshi; Zhu Shanfeng
        PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, Peer-reviewed
      • Efficient Convex Completion of Coupled Tensors using Coupled Nuclear Norms
        Wimalawarne Kishan; Mamitsuka Hiroshi
        Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., 2018, Peer-reviewed
      • Factor Analysis on a Graph.
        Masayuki Karasuyama; Hiroshi Mamitsuka
        International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, 2018, Peer-reviewed
      • SiBIC: A Tool for Generating a Network of Biclusters Captured by Maximal Frequent Itemset Mining
        Kei-ichiro Takahashi; David A. duVerle; Sohiya Yotsukura; Ichigaku Takigawa; Hiroshi Mamitsuka
        Methods in Molecular Biology, 2018, Peer-reviewed
      • DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank
        Jieyao Deng; Qingjun Yuan; Hiroshi Mamitsuka; Shanfeng Zhu
        Methods in Molecular Biology, 2018, Peer-reviewed
      • MeSHLabeler and DeepMeSH: Recent Progress in Large-Scale MeSH Indexing
        Shengwen Peng; Hiroshi Mamitsuka; Shanfeng Zhu
        Methods in Molecular Biology, 2018, Peer-reviewed
      • Data Mining for Systems Biology
        Hiroshi Mamitsuka
        Methods in Molecular Biology, 2018, Peer-reviewed
      • Preface
        Mamitsuka H
        Methods in Molecular Biology, 2018, Peer-reviewed
      • A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines
        Mehmet Gonen; Barbara A. Weir; Glenn S. Cowley; Francisca Vazquez; Yuanfang Guan; Alok Jaiswal; Masayuki Karasuyama; Vladislav Uzunangelov; Tao Wang; Aviad Tsherniak; Sara Howell; Daniel Marbach; Bruce Hoff; Thea C. Norman; Antti Airola; Adrian Bivol; Kerstin Bunte; Daniel Carlin; Sahil Chopra; Alden Deran; Kyle Ellrott; Peddinti Gopalacharyulu; Kiley Graim; Samuel Kaski; Suleiman A. Khan; Yulia Newton; Sam Ng; Tapio Pahikkala; Evan Paull; Artem Sokolov; Hao Tang; Jing Tang; Krister Wennerberg; Yang Xie; Xiaowei Zhan; Fan Zhu; Tero Aittokallio; Hiroshi Mamitsuka; Joshua M. Stuart; Jesse S. Boehm; David E. Root; Guanghua Xiao; Gustavo Stolovitzky; William C. Hahn; Adam A. Margolin
        CELL SYSTEMS, Nov. 2017, Peer-reviewed
      • Convex factorization machine for toxicogenomics prediction
        Makoto Yamada; Wenzhao Lian; Amit Goyal; Jianhui Chen; Kishan Wimalawarne; Suleiman A. Khan; Samuel Kaski; Hiroshi Mamitsuka; Yi Chang
        Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13 Aug. 2017, Peer-reviewed
      • Exploring phenotype patterns of breast cancer within somatic mutations: A modicum in the intrinsic code
        Sohiya Yotsukura; Masayuki Karasuyama; Ichigaku Takigawa; Hiroshi Mamitsuka
        Briefings in Bioinformatics, 01 Jul. 2017, Peer-reviewed
      • Exploring phenotype patterns of breast cancer within somatic mutations: a modicum in the intrinsic code
        Sohiya Yotsukura; Masayuki Karasuyama; Ichigaku Takigawa; Hiroshi Mamitsuka
        BRIEFINGS IN BIOINFORMATICS, Jul. 2017, Peer-reviewed
      • Adaptive edge weighting for graph-based learning algorithms
        Masayuki Karasuyama; Hiroshi Mamitsuka
        MACHINE LEARNING, Feb. 2017, Peer-reviewed
      • Generalized Sparse Learning of Linear Models Over the Complete Subgraph Feature Set
        Ichigaku Takigawa; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, Feb. 2017, Peer-reviewed
      • Computational recognition for long non-coding RNA (lncRNA): Software and databases
        Sohiya Yotsukura; David duverle; Timothy Hancock; Yayoi Natsume-Kitatani; Hiroshi Mamitsuka
        BRIEFINGS IN BIOINFORMATICS, Jan. 2017, Peer-reviewed
      • Introduction to the special issue on GIW 2016
        Shuigeng Zhou; Phoebe Yi-Ping Chen; Hiroshi Mamitsuka
        Journal of Bioinformatics and Computational Biology, Oct. 2016, Peer-reviewed
      • GENE-PROXIMITY MODELS FOR GENOME-WIDE ASSOCIATION STUDIES
        Ian Johnston; Timothy Hancock; Hiroshi Mamitsuka; Luis Carvalho
        ANNALS OF APPLIED STATISTICS, Sep. 2016, Peer-reviewed
      • A Robust Convex Formulations for Ensemble Clustering.
        Gao, J; Yamada, M; Kaski, S; Mamitsuka, H; Zhu, S
        Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), Jul. 2016, Peer-reviewed
      • NMRPro: an integrated web component for interactive processing and visualization of NMR spectra
        Ahmed Mohamed; Canh Hao Nguyen; Hiroshi Mamitsuka
        BIOINFORMATICS, Jul. 2016, Peer-reviewed
      • DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
        Shengwen Peng; Ronghui You; Hongning Wang; Chengxiang Zhai; Hiroshi Mamitsuka; Shanfeng Zhu
        BIOINFORMATICS, Jun. 2016, Peer-reviewed
      • DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank
        Qingjun Yuan; Junning Gao; Dongliang Wu; Shihua Zhang; Hiroshi Mamitsuka; Shanfeng Zhu
        BIOINFORMATICS, Jun. 2016, Peer-reviewed
      • New Resistance Distances with Global Information on Large Graphs.
        Nguyen, C. H; Mamitsuka, H
        JMLR Workshop and Conference Proceedings (Proceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2016)), May 2016, Peer-reviewed
      • MetaMHCpan, A Meta Apporach for Pan-specific MHC Peptide Binding Prediction.
        Xu, Y; Luo, C; Mamitsuka, H; Zhu, S
        Methods in Molecular Biology, Apr. 2016, Peer-reviewed
      • Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array
        Fumiko Shinkai-Ouchi; Suguru Koyama; Yasuko Ono; Shoji Hata; Koichi Ojima; Mayumi Shindo; David duVerle; Mika Ueno; Fujiko Kitamura; Naoko Doi; Ichigaku Takigawa; Hiroshi Mamitsuka; Hiroyuki Sorimachi
        MOLECULAR & CELLULAR PROTEOMICS, Apr. 2016, Peer-reviewed
      • Classification of Promoters Based on the Combination of Core Promoter Elements Exhibits Different Histone Modification Patterns
        Yayoi Natsume-Kitatani; Hiroshi Mamitsuka
        PLOS ONE, Mar. 2016, Peer-reviewed
      • Current status and prospects of computational resources for natural product dereplication: a review
        Ahmed Mohamed; Canh Hao Nguyen; Hiroshi Mamitsuka
        BRIEFINGS IN BIOINFORMATICS, Mar. 2016, Peer-reviewed
      • Mining approximate patterns with frequent locally optimal occurrences
        Atsuyoshi Nakamura; Ichigaku Takigawa; Hisashi Tosaka; Mineichi Kudo; Hiroshi Mamitsuka
        DISCRETE APPLIED MATHEMATICS, Feb. 2016, Peer-reviewed
      • A bioinformatics approach for understanding genotype-phenotype correlation in breast cancer
        Sohiya Yotsukura; Masayuki Karasuyama; Ichigaku Takigawa; Hiroshi Mamitsuka
        Big Data Analytics in Genomics, 01 Jan. 2016, Peer-reviewed
      • Some Properties of a Dissimilarity Measure for Labeled Graphs.
        Wicker, N; Nguyen, C. H; Mamitsuka, H
        Publications Mathématiques de Besançon: Algèbre et Théorie des Nombres, 2016, Peer-reviewed
      • MeSHSim: An R/Bioconductor package for measuring semantic similarity over MeSH headings and MEDLINE documents
        Jing Zhou; Yuxuan Shui; Shengwen Peng; Xuhui Li; Hiroshi Mamitsuka; Shanfeng Zhu
        JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, Dec. 2015, Peer-reviewed
      • BMExpert: Mining MEDLINE for Finding Experts in Biomedical Domains Based on Language Model
        Beichen Wang; Xiaodong Chen; Hiroshi Mamitsuka; Shanfeng Zhu
        IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, Nov. 2015, Peer-reviewed
      • 機械学習による薬物分子-ターゲット相互作用予測
        馬見塚 拓
        SAR News, Oct. 2015, Invited
      • Instance-wise Weighted Nonnegative Matrix Factorization for Aggregating Partitions with Locally Reliable Clusters.
        Zheng, X; Zhu, S; Gao, J; Mamitsuka, H
        Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Jul. 2015, Peer-reviewed
      • In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure-Property Relationship Models
        Hiromi Baba; Jun-ichi Takahara; Hiroshi Mamitsuka
        PHARMACEUTICAL RESEARCH, Jul. 2015, Peer-reviewed
      • MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
        Ke Liu; Shengwen Peng; Junqiu Wu; Chengxiang Zhai; Hiroshi Mamitsuka; Shanfeng Zhu
        BIOINFORMATICS, Jun. 2015, Peer-reviewed
      • Non-Negative Matrix Factorization with Auxiliary Information on Overlapping Groups
        Motoki Shiga; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, Jun. 2015, Peer-reviewed
      • Evaluation of serum-based cancer biomarkers: A brief review from a clinical and computational viewpoint
        Sohiya Yotsukura; Hiroshi Mamitsuka
        CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, Feb. 2015, Peer-reviewed
      • MeSHSim: An R/Bioconductor package for measuring semantic similarity over MeSH headings and MEDLINE documents
        Zhou Jing; Shui Yuxuan; Peng Shengwen; Li Xuhui; Hiroshi Mamitsuka; Zhu Shanfeng
        2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, Peer-reviewed
      • NetPathMiner: R/Bioconductor package for network path mining through gene expression
        Ahmed Mohamed; Timothy Hancock; Canh Hao Nguyen; Hiroshi Mamitsuka
        BIOINFORMATICS, Nov. 2014, Peer-reviewed
      • Similarity-based machine learning methods for predicting drug-target interactions: a brief review
        Hao Ding; Ichigaku Takigawa; Hiroshi Mamitsuka; Shanfeng Zhu
        BRIEFINGS IN BIOINFORMATICS, Sep. 2014, Peer-reviewed
      • Selecting Graph Cut Solutions via Global Graph Similarity
        Canh Hao Nguyen; Nicolas Wicker; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Jul. 2014, Peer-reviewed
      • Detecting Differentially Coexpressed Genes from Labeled Expression Data: A Brief Review
        Mitsunori Kayano; Motoki Shiga; Hiroshi Mamitsuka
        IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, Jan. 2014, Peer-reviewed
      • SiBIC: A web server for generating gene set networks based on biclusters obtained by maximal frequent itemset mining
        Kei-Ichiro Takahashi; Ichigaku Takigawa; Hiroshi Mamitsuka
        PLoS ONE, 30 Dec. 2013, Peer-reviewed
      • Multiple Graph Label Propagation by Sparse Integration
        Masayuki Karasuyama; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Dec. 2013, Peer-reviewed
      • Manifold-based Similarity Adaptation for Label Propagation.
        Karasuyama, M; Mamitsuka, H
        Proceedings of the Twenty-Seventh Annual Conference on Neural Information Processing Systems (NIPS 2013), Dec. 2013, Peer-reviewed
      • Collaborative matrix factorization with multiple similarities for predicting drug-Target interactions
        Xiaodong Zheng; Hao Ding; Hiroshi Mamitsuka; Shanfeng Zhu
        Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 11 Aug. 2013, Peer-reviewed
      • Efficient Semisupervised MEDLINE Document Clustering With MeSH-Semantic and Global-Content Constraints
        Jun Gu; Wei Feng; Jia Zeng; Hiroshi Mamitsuka; Shanfeng Zhu
        IEEE TRANSACTIONS ON CYBERNETICS, Aug. 2013, Peer-reviewed
      • Fast algorithms for finding a minimum repetition representation of strings and trees
        Atsuyoshi Nakamura; Tomoya Saito; Ichigaku Takigawa; Mineichi Kudo; Hiroshi Mamitsuka
        Discrete Applied Mathematics, Jul. 2013, Peer-reviewed
      • A new dissimilarity measure for comparing labeled graphs
        Nicolas Wicker; Canh Hao Nguyen; Hiroshi Mamitsuka
        LINEAR ALGEBRA AND ITS APPLICATIONS, Mar. 2013, Peer-reviewed
      • Graph mining: procedure, application to drug discovery and recent advances
        Ichigaku Takigawa; Hiroshi Mamitsuka
        DRUG DISCOVERY TODAY, Jan. 2013, Peer-reviewed, Invited
      • Integrated View of the Human Chromosome X-centric Proteome Project
        Tadashi Yamamoto; Keiichi Nakayama; Hisashi Hirano; Takeshi Tomonaga; Yasushi Ishihama; Tetsushi Yamada; Tadashi Kondo; Yoshio Kodera; Yuichi Satop; None Araki; Hiroshi Mamitsuka; Naoki Goshima
        JOURNAL OF PROTEOME RESEARCH, Jan. 2013, Peer-reviewed
      • Identifying pathways of coordinated gene expression.
        Hancock T; Takigawa I; Mamitsuka H
        Methods in molecular biology (Clifton, N.J.), 2013, Peer-reviewed
      • An in silico model for interpreting polypharmacology in drug-target networks.
        Takigawa I; Tsuda K; Mamitsuka H
        Methods in molecular biology (Clifton, N.J.), 2013, Peer-reviewed
      • Variational Bayes co-clustering with auxiliary information
        Motoki Shiga; Hiroshi Mamitsuka
        MultiClust 2013 - 4th Workshop on Multiple Clusterings, Multi-View Data, and Multi-Source Knowledge-Driven Clustering, in Conj. with the 19th ACM SIGKDD Int. Conf. on KDD 2013, 2013, Peer-reviewed
      • Machine Learning Sequence Classification Techniques: Application to Cysteine Protease Cleavage Prediction
        David A. duVerle; Hiroshi Mamitsuka
        CURRENT BIOINFORMATICS, Dec. 2012, Peer-reviewed
      • Latent Feature Kernels for Link Prediction on Sparse Graphs
        Canh Hao Nguyen; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Nov. 2012, Peer-reviewed
      • Boosted Network Classifiers for Local Feature Selection
        Timothy Hancock; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Nov. 2012, Peer-reviewed
      • Mining from protein-protein interactions
        Hiroshi Mamitsuka
        WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, Sep. 2012, Peer-reviewed, Invited
      • Understanding the substrate specificity of conventional calpains
        Hiroyuki Sorimachi; Hiroshi Mamitsuka; Yasuko Ono
        BIOLOGICAL CHEMISTRY, Sep. 2012, Peer-reviewed, Invited
      • Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools
        Lianming Zhang; Keiko Udaka; Hiroshi Mamitsuka; Shanfeng Zhu
        BRIEFINGS IN BIOINFORMATICS, May 2012, Peer-reviewed
      • A review of statistical methods for prediction of proteolytic cleavage
        David A. duVerle; Hiroshi Mamitsuka
        BRIEFINGS IN BIOINFORMATICS, May 2012, Peer-reviewed
      • Close up実験法 Series225 ROS-DETによる遺伝子「スイッチ発現」検出
        茅野 光範; 馬見塚 拓
        実験医学, Apr. 2012, Invited
      • A Variational Bayesian Framework for Clustering with Multiple Graphs
        Motoki Shiga; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, Apr. 2012, Peer-reviewed
      • Efficient semi-supervised learning on locally informative multiple graphs
        Motoki Shiga; Hiroshi Mamitsuka
        PATTERN RECOGNITION, Mar. 2012, Peer-reviewed
      • TEPITOPEpan: Extending TEPITOPE for Peptide Binding Prediction Covering over 700 HLA-DR Molecules
        Lianming Zhang; Yiqing Chen; Hau-San Wong; Shuigeng Zhou; Hiroshi Mamitsuka; Shanfeng Zhu
        PLOS ONE, Feb. 2012, Peer-reviewed
      • Identifying Neighborhoods of Coordinated Gene Expression and Metabolite Profiles
        Timothy Hancock; Nicolas Wicker; Ichigaku Takigawa; Hiroshi Mamitsuka
        PLOS ONE, Feb. 2012, Peer-reviewed
      • Ensemble approaches for improving HLA Class I-peptide binding prediction
        Xihao Hu; Hiroshi Mamitsuka; Shanfeng Zhu
        JOURNAL OF IMMUNOLOGICAL METHODS, Nov. 2011, Peer-reviewed
      • Clustering genes with expression and beyond
        Motoki Shiga; Hiroshi Mamitsuka
        WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, Nov. 2011, Peer-reviewed, Invited
      • Discriminative Graph Embedding for Label Propagation
        Canh Hao Nguyen; Hiroshi Mamitsuka
        IEEE TRANSACTIONS ON NEURAL NETWORKS, Sep. 2011, Peer-reviewed
      • 化学とグラフアルゴリズム
        瀧川 一学; 馬見塚 拓
        化学と教育, Sep. 2011, Peer-reviewed, Invited
      • Genome-Wide Integration on Transcription Factors, Histone Acetylation and Gene Expression Reveals Genes Co-Regulated by Histone Modification Patterns
        Yayoi Natsume-Kitatani; Motoki Shiga; Hiroshi Mamitsuka
        PLOS ONE, Jul. 2011, Peer-reviewed
      • ROS-DET: robust detector of switching mechanisms in gene expression
        Mitsunori Kayano; Ichigaku Takigawa; Motoki Shiga; Koji Tsuda; Hiroshi Mamitsuka
        NUCLEIC ACIDS RESEARCH, Jun. 2011, Peer-reviewed
      • Calpain Cleavage Prediction Using Multiple Kernel Learning
        David A. duVerle; Yasuko Ono; Hiroyuki Sorimachi; Hiroshi Mamitsuka
        PLOS ONE, May 2011, Peer-reviewed
      • Mining Significant Substructure Pairs for Interpreting Polypharmacology in Drug-Target Network
        Ichigaku Takigawa; Koji Tsuda; Hiroshi Mamitsuka
        PLOS ONE, Feb. 2011, Peer-reviewed
      • Efficiently mining delta-tolerance closed frequent subgraphs
        Ichigaku Takigawa; Hiroshi Mamitsuka
        MACHINE LEARNING, Feb. 2011, Peer-reviewed
      • A spectral approach to clustering numerical vectors as nodes in a network
        Motoki Shiga; Ichigaku Takigawa; Hiroshi Mamitsuka
        PATTERN RECOGNITION, Feb. 2011, Peer-reviewed
      • Mining Metabolic Network through Gene Expression
        Mamitsuka Hiroshi
        Abstracts for Annual Meeting of Japanese Proteomics Society, 2011
      • Kernels for Link Prediction with Latent Feature Models
        Canh Hao Nguyen; Hiroshi Mamitsuka
        MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2011, Peer-reviewed
      • Glycoinformatics: Data Mining-based Approaches
        Hiroshi Mamitsuka
        CHIMIA, 2011, Invited
      • Mining Patterns from Glycan Structures.
        Takigawa, I; Hashimoto, K; Shiga, M; Kanehisa, M; Mamitsuka, H
        Proceedings of the International Beilstein Symposium on Glyco-Bioinformatics, Dec. 2010
      • On network-based kernel methods for protein-protein interactions with applications in protein functions prediction
        Limin Li; Waiki Ching; Yatming Chan; Hiroshi Mamitsuka
        JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, Oct. 2010, Peer-reviewed
      • Mining metabolic pathways through gene expression
        Timothy Hancock; Ichigaku Takigawa; Hiroshi Mamitsuka
        BIOINFORMATICS, Sep. 2010, Peer-reviewed
      • MetaMHC: a meta approach to predict peptides binding to MHC molecules
        Xihao Hu; Wenjian Zhou; Keiko Udaka; Hiroshi Mamitsuka; Shanfeng Zhu
        NUCLEIC ACIDS RESEARCH, Jul. 2010, Peer-reviewed
      • On the Performance of Methods for Finding a Switching Mechanism in Gene Expression.
        Kayano, M; Takigawa, I; Shiga, M; Tsuda, K; Mamitsuka, H
        Genome Informatics (Proceedings of the Tenth Annual Workshop on Bioinformatics and Systems Biology (IBSB 2010)), Jul. 2010, Peer-reviewed
      • Boosted Optimization for Network Classification.
        Hancock, T; Mamitsuka, H
        JMLR Workshop and Conference Proceedings (Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010)), May 2010, Peer-reviewed
      • A markov classification model for metabolic pathways
        Timothy Hancock; Hiroshi Mamitsuka
        ALGORITHMS FOR MOLECULAR BIOLOGY, Jan. 2010, Peer-reviewed
      • TAP Hunter: A SVM-based system for predicting TAP ligands using local description of amino acid sequence
        Tze Hau Lam; Hiroshi Mamitsuka; Ee Chee Ren; Joo Chuan Tong
        Immunome Research, 2010, Peer-reviewed
      • Algorithms for finding a minimum repetition representation of a string
        Atsuyoshi Nakamura; Tomoya Saito; Ichigaku Takigawa; Hiroshi Mamitsuka; Mineichi Kudo
        Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, Peer-reviewed
      • Variational Bayes learning over multiple graphs
        Motoki Shiga; Hiroshi Mamitsuka
        Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2010, 2010, Peer-reviewed
      • HAMSTER: Visualizing microarray experiments as a set of minimum spanning trees
        Raymond Wan; Larisa Kiseleva; Hajime Harada; Hiroshi Mamitsuka; Paul Horton
        Source Code for Biology and Medicine, 20 Nov. 2009, Peer-reviewed
      • Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data
        Mitsunori Kayano; Ichigaku Takigawa; Motoki Shiga; Koji Tsuda; Hiroshi Mamitsuka
        BIOINFORMATICS, Nov. 2009, Peer-reviewed
      • Field independent probabilistic model for clustering multi-field documents
        Shanfeng Zhu; Ichigaku Takigawa; Jia Zeng; Hiroshi Mamitsuka
        INFORMATION PROCESSING & MANAGEMENT, Sep. 2009, Peer-reviewed
      • Enhancing MEDLINE document clustering by incorporating MeSH semantic similarity
        Shanfeng Zhu; Jia Zeng; Hiroshi Mamitsuka
        BIOINFORMATICS, Aug. 2009, Peer-reviewed
      • Annotating Gene Functions with Integrative Spectral Clustering on Microarray Expressions and Sequences.
        Li, L; Shiga, M; Ching, W.-K; Mamitsuka, H
        Genome Informatics (Proceedings of the Ninth Annual Workshop on Bioinformatics and Systems Biology (IBSB 2009)), Jul. 2009
      • CaMPDB: a Resource for Calpain and Modulatory Proteolysis.
        duVerle, D. A; Takigawa, I; Ono, Y; Sorimachi, H; Mamitsuka, H
        Genome Informatics (Proceedings of the Ninth Annual Workshop on Bioinformatics and Systems Biology (IBSB 2009)), Jul. 2009
      • Active Pathway Identification and Classification with Probabilistic Ensembles.
        Hancock, T; Mamitsuka, H
        Genome Informatics (Proceedings of the Ninth Annual Workshop on Bioinformatics and Systems Biology (IBSB 2009)), Jul. 2009
      • Efficient Probabilistic Latent Semantic Analysis through Parallelization
        Raymond Wan; Vo Ngoc Anh; Hiroshi Mamitsuka
        INFORMATION RETRIEVAL TECHNOLOGY, PROCEEDINGS, 2009, Peer-reviewed
      • A Markov Classification Model for Metabolic Pathways
        Timothy Hancock; Hiroshi Mamitsuka
        ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2009, Peer-reviewed
      • Discovering network motifs in protein interaction networks
        Raymond Wan; Hiroshi Mamitsuka
        Biological Data Mining in Protein Interaction Networks, 2009, Peer-reviewed
      • A Study of Network-based Kernel Methods on Protein-Protein Interaction for Protein Functions Prediction
        Wai-Ki Ching; Limin Li; Yat-Ming Chan; Hiroshi Mamitsuka
        OPTIMIZATION AND SYSTEMS BIOLOGY, 2009, Peer-reviewed
      • Mining significant tree patterns in carbohydrate sugar chains
        Kosuke Hashimoto; Ichigaku Takigawa; Motoki Shiga; Minoru Kanehisa; Hiroshi Mamitsuka
        BIOINFORMATICS, Aug. 2008, Peer-reviewed
      • A Framework for Determining Outlying Microarray Experiments.
        Wan; R. Wheelock, A; Mamitsuka, H
        Genome Informatics (Proceedings of the Eighth Annual Workshop on Bioinformatics and Systems Biology (IBSB 2008)), Jun. 2008
      • Semi-Supervised Graph Partitioning with Decision Trees.
        Hancock, T; Mamitsuka, H
        Genome Informatics (Proceedings of the Eighth Annual Workshop on Bioinformatics and Systems Biology (IBSB 2008)), Jun. 2008
      • 多様なゲノムデータの統合的クラスタリング解析(理論/実験技術)
        志賀 元紀; 瀧川 一学; 馬見塚 拓
        生物物理, May 2008, Peer-reviewed, Invited
      • PURE:PubMed文献検索支援システム
        馬見塚 拓; 米屋 隆
        実験医学, May 2008, Invited
      • A new efficient probabilistic model for mining labeled ordered trees applied to glycobiology
        Kosuke Hashimoto; Kiyoko Flora Aoki-Kinoshita; Nobuhisa Ueda; Minoru Kanehisa; Hiroshi Mamitsuka
        ACM Transactions on Knowledge Discovery from Data, 01 Mar. 2008, Peer-reviewed
      • Informatic innovations in glycobiology: relevance to drug discovery
        Hiroshi Mamitsuka
        DRUG DISCOVERY TODAY, Feb. 2008, Peer-reviewed
      • Probabilistic path ranking based on adjacent pairwise coexpression for metabolic transcripts analysis
        Ichigaku Takigawa; Hiroshi Mamitsuka
        BIOINFORMATICS, Jan. 2008, Peer-reviewed
      • Identification of endocrine disruptor biodegradation by integration of structure-activity relationship with pathway analysis
        Tadashi Kadowaki; Craig E. Wheelock; Tetsuya Adachi; Taku Kudo; Shinobu Okamoto; Nobuya Tanaka; Koichiro Tonomura; Gozoh Tsujimoto; Hiroshi Mamitsuka; Susumu Goto; Minoru Kanehisa
        ENVIRONMENTAL SCIENCE & TECHNOLOGY, Dec. 2007, Peer-reviewed
      • Active ensemble learning: Application to data mining and bioinformatics
        Hiroshi Mamitsuka; Naoki Abe
        Systems and Computers in Japan, Oct. 2007, Peer-reviewed
      • Annotating gene function by combining expression data with a modular gene network
        Motoki Shiga; Ichigaku Takigawa; Hiroshi Mamitsuka
        BIOINFORMATICS, Jul. 2007, Peer-reviewed
      • A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors
        Takashi Yoneya; Hiroshi Mamitsuka
        BIOINFORMATICS, Apr. 2007, Peer-reviewed
      • Predicting implicit associated cancer genes from OMIM and MEDLINE by a new probabilistic model.
        Shanfeng Zhu; Yasushi Okuno; Gozoh Tsujimoto; Hiroshi Mamitsuka
        BMC Systems Biology, 2007, Peer-reviewed
      • A probabilistic model for clustering text documents with multiple fields
        Shanfeng Zhu; Ichigaku Takigawa; Shuqin Zhang; Hiroshi Mamitsuka
        ADVANCES IN INFORMATION RETRIEVAL, 2007, Peer-reviewed
      • Pure: A Pubmed Article Recommendation System Based On Content-Based Filtering
        Takashi Yoneya; Hiroshi Mamitsuka
        GENOME INFORMATICS 2007, VOL 18, 2007, Peer-reviewed
      • A Spectral Clustering Approach to Optimally Combining Numerical Vectors with a Modular Network
        Motoki Shiga; Ichigaku Takigawa; Hiroshi Mamitsuka
        KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, Peer-reviewed
      • Selecting features in microarray classification using ROC curves
        Hiroshi Mamitsuka
        PATTERN RECOGNITION, Dec. 2006, Peer-reviewed
      • A New Efficient Probabilistic Model for Mining Labeled Ordered Trees.
        Hashimoto, K; Aoki-Kinoshita, K. F; Ueda, N; Kanehisa, M; Mamitsuka, H
        Proceedings of the Twelfth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining (KDD 2006), Aug. 2006, Peer-reviewed
      • Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules
        Shanfeng Zhu; Keiko Udaka; John Sidney; Alessandro Sette; Kiyoko F. Aoki-Kinoshita; Hiroshi Mamitsuka
        BIOINFORMATICS, Jul. 2006, Peer-reviewed
      • ProfilePSTMM: capturing tree-structure motifs in carbohydrate sugar chains
        Kiyoko F. Aoki-Kinoshita; Nobuhisa Ueda; Hiroshi Mamitsuka; Minoru Kanehisa
        BIOINFORMATICS, Jul. 2006, Peer-reviewed
      • Query-learning-based iterative feature-subset selection for learning from high-dimensional data sets
        H Mamitsuka
        KNOWLEDGE AND INFORMATION SYSTEMS, Jan. 2006, Peer-reviewed
      • Combining Vector-Space and Word-Based Aspect Models for Passage Retrieval.
        Raymond Wan; Ichigaku Takigawa; Hiroshi Mamitsuka; Vo Ngoc Anh
        Proceedings of the Fifteenth Text REtrieval Conference, TREC 2006, Gaithersburg, Maryland, USA, November 14-17, 2006, 2006, Peer-reviewed
      • Applying Gaussian distribution-dependent criteria to decision trees for high-dimensional microarray data
        Raymond Wan; Ichigaku Takigawa; Hiroshi Mamitsuka
        DATA MINING AND BIOINFORMATICS, 2006, Peer-reviewed
      • Application of a New Probabilistic Model for Mining Implicit Associated Cancer Genes from OMIM and Medline.
        Zhu, S; Okuno, Y; Tsujimoto, G; Mamitsuka, H
        Cancer Informatics, 2006, Peer-reviewed
      • A probabilistic model for mining implicit 'chemical compound-gene' relations from literature
        SF Zhu; Y Okuno; G Tsujimoto; H Mamitsuka
        BIOINFORMATICS, Sep. 2005, Peer-reviewed
      • Finding the biologically optimal alignment of multiple sequences
        H Mamitsuka
        ARTIFICIAL INTELLIGENCE IN MEDICINE, Sep. 2005, Peer-reviewed
      • Computational intelligence in solving bioinformatics problems
        KJ Cios; H Mamitsuka; T Nagashima; R Tadeusiewicz
        ARTIFICIAL INTELLIGENCE IN MEDICINE, Sep. 2005
      • A probabilistic model for mining labeled ordered trees: Capturing patterns in carbohydrate sugar chains
        N Ueda; KF Aoki-Kinoshita; A Yamaguchi; T Akutsu; H Mamitsuka
        IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, Aug. 2005, Peer-reviewed
      • Mining new protein-protein interactions
        H Mamitsuka
        IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, May 2005, Peer-reviewed
      • A score matrix to reveal the hidden links in glycans
        KF Aoki; H Mamitsuka; T Akutsu; M Kanehisa
        BIOINFORMATICS, Apr. 2005, Peer-reviewed
      • Essential latent knowledge for protein-protein interactions: Analysis by an unsupervised learning approach
        H Mamitsuka
        IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, Apr. 2005, Peer-reviewed
      • Efficient Unsupervised Mining from Noisy Co-occurrence Data
        Mamitsuka, H
        New Mathematics and Natural Computation, Mar. 2005, Peer-reviewed
      • Cleaning microarray exprossion data using Markov random fields based on profile similarity
        Raymond Wan; Hiroshi Mamitsuka; Kiyoko F. Aoki
        Proceedings of the ACM Symposium on Applied Computing, 2005, Peer-reviewed
      • Comprehensive analysis and prediction of synthetic lethality using subcellular locations.
        Takuji Yamada; Shuichi Kawashima; Hiroshi Mamitsuka; Susumu Goto; Minoru Kanehisa
        Genome informatics. International Conference on Genome Informatics, 2005, Peer-reviewed
      • The evolutionary repertoires of the eukaryotic-type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes
        Y Igarashi; KF Aoki; H Mamitsuka; K Kuma; M Kanehisa
        MOLECULAR BIOLOGY AND EVOLUTION, Nov. 2004, Peer-reviewed
      • Finding the maximum common subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning trees
        A Yamaguchi; KF Aoki; H Mamitsuka
        INFORMATION PROCESSING LETTERS, Oct. 2004, Peer-reviewed
      • Application of a new probabilistic model for recognizing complex patterns in glycans
        Kiyoko F. Aoki; Nobuhisa Ueda; Atsuko Yamaguchi; Minoru Kanehisa; Tatsuya Akutsu; Hiroshi Mamitsuka
        BIOINFORMATICS, Aug. 2004, Peer-reviewed
      • KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains
        KF Aoki; A Yamaguchi; N Ueda; T Akutsu; H Mamitsuka; S Goto; M Kanehisa
        NUCLEIC ACIDS RESEARCH, Jul. 2004, Peer-reviewed
      • Managing and analyzing carbohydrate data
        KF Aoki; N Ueda; A Yamaguchi; T Akutsu; M Kanehisa; H Mamitsuka
        SIGMOD RECORD, Jun. 2004, Peer-reviewed
      • A hierarchical mixture of markov models for finding biologically active metabolic paths using gene expression and protein classes
        Hiroshi Mamitsuka; Yasushi Okuno
        Proceedings - 2004 IEEE Computational Systems Bioinformatics Conference, CSB 2004, 2004, Peer-reviewed
      • A general probabilistic framework for mining labeled ordered trees
        N Ueda; KF Aoki; H Mamitsuka
        PROCEEDINGS OF THE FOURTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2004, Peer-reviewed
      • Mining Biologically Active Patterns in Metabolic Pathways using Microarray Expression Profiles
        Mamitsuka, H; Okuno, Y; Yamaguchi, A
        ACM SIGKDD Explorations, Dec. 2003, Peer-reviewed
      • Efficient Tree Matching Methods for Accurate Carbohydrate Database Queries.
        Aoki, K. F; Yamaguchi, A; Okuno, Y; Akutsu, T; Ueda, N; Kanehisa, M; Mamitsuka, H
        Genome Informatics (Proceedings of the Fourteenth International Conference on Genome Informatics), Dec. 2003, Peer-reviewed
      • Hierarchical Latent Knowledge Analysis for Co-occurrence Data.
        Mamitsuka, H
        Proceedings of the Twenties International Conference on Machine Learning (ICML 2003), Aug. 2003, Peer-reviewed
      • Prediction of MHC Class I Binding Peptides Using an Ensemble Learning Approach
        Majeux Nicolas; Udaka Keiko; Mamitsuka Hiroshi
        GI, 2003
      • Statistical Significance of Tree Similarity Scores
        Aoki Kiyoko F.; Yamaguchi Atsuko; Okuno Yasushi; Akutsu Tatsuya; Ueda Nobuhisa; Kanehisa Minoru; Mamitsuka Hiroshi
        GI, 2003
      • Selective sampling with a hierarchical latent variable model
        H Mamitsuka
        ADVANCES IN INTELLIGENT DATA ANALYSIS V, 2003, Peer-reviewed
      • Detecting experimental noises in protein-protein interactions with iterative sampling and model-based clustering
        H Mamitsuka
        THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, Peer-reviewed
      • Efficient unsupervised mining from noisy data sets: application to clustering co-occurrence data
        H Mamitsuka
        PROCEEDINGS OF THE THIRD SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2003, Peer-reviewed
      • Finding the maximum common subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning trees
        A Yamaguchi; H Mamitsuka
        ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, Peer-reviewed
      • Empirical evaluation of ensemble feature subset selection methods for learning from a high-dimensional database in drug design
        H Mamitsuka
        THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, Peer-reviewed
      • Efficient mining from heterogeneous data sets for predicting protein-protein interactions
        H Mamitsuka
        14TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2003, Peer-reviewed
      • Empirical evaluation of a dynamic experiment design method for prediction of MHC class I-binding peptides
        K Udaka; H Mamitsuka; Y Nakaseko; N Abe
        JOURNAL OF IMMUNOLOGY, Nov. 2002, Peer-reviewed
      • Iteratively Selecting Feature Subsets for Mining from High-Dimensional Databases.
        Mamitsuka, H
        Lecture Notes in Computer Science (Proceedings of the Sixth European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2002)), Aug. 2002, Peer-reviewed
      • Active Ensemble Learning : Applications to Data Mining and Bioinformatics
        MAMITSUKA Hiroshi; ABE Naoki
        The Transactions of the Institute of Electronics,Information and Communication Engineers., May 2002, Peer-reviewed, Invited
      • Prediction of MHC class I binding peptides by a query learning algorithm based on hidden Markov models
        K Udaka; H Mamitsuka; Y Nakaseko; N Abe
        JOURNAL OF BIOLOGICAL PHYSICS, 2002, Peer-reviewed
      • Efficient Mining from Large Databases by Query Learning.
        Mamitsuka, H; Abe, N
        Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Jun. 2000, Peer-reviewed
      • Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models
        H Mamitsuka
        PROTEINS-STRUCTURE FUNCTION AND GENETICS, Dec. 1998, Peer-reviewed
      • Query Learning Strategies Using Boosting and Bagging.
        Abe, N; Mamitsuka, H
        Proceedings of the Fifteenth International Conference on Machine Learning (ICML 98), Jul. 1998, Peer-reviewed
      • Empirical comparison of competing query learning methods
        N Abe; H Mamitsuka; A Nakamura
        DISCOVERY SCIENCE, 1998, Peer-reviewed
      • Predicting protein secondary structure using stochastic tree grammars
        N Abe; H Mamitsuka
        MACHINE LEARNING, Nov. 1997, Peer-reviewed
      • Supervised Learning of Hidden Markov Models for Sequence Discrimination.
        Mamitsuka, H
        Proceeds of the First International Conference on Computational Molecular Biology (RECOMB 97), Jan. 1997, Peer-reviewed
      • A learning method of hidden Markov models for sequence discrimination
        Hiroshi Mamitsuka
        Journal of Computational Biology, 1996, Peer-reviewed
      • REPRESENTING INTER-RESIDUE DEPENDENCIES IN PROTEIN SEQUENCES WITH PROBABILISTIC NETWORKS
        H MAMITSUKA
        COMPUTER APPLICATIONS IN THE BIOSCIENCES, Aug. 1995, Peer-reviewed
      • ALPHA-HELIX REGION PREDICTION WITH STOCHASTIC RULE LEARNING
        H MAMITSUKA; K YAMANISHI
        COMPUTER APPLICATIONS IN THE BIOSCIENCES, Aug. 1995, Peer-reviewed
      • α-helix region prediction with stochastic rule learning
        Hiroshi Mamitsuka; Kenji Yamanishi
        Bioinformatics, Aug. 1995, Peer-reviewed
      • Representing inter-residue dependencies in protein sequences with probabilistic networks
        Hiroshi Mamitsuka
        Bioinformatics, Aug. 1995, Peer-reviewed
      • Learning Hidden Markov Models Using Back-Propagation through Time
        Mamitsuka Hiroshi
        GI, 1995
      • Predicting Location and Structure of Beta-Sheet Regions Using Stochastic Tree Grammars.
        Mamitsuka, H; Abe, N
        Proceedings of the Second International Conferenceon Intelligent Systems for Molecular Biology (ISMB 94), Aug. 1994, Peer-reviewed
      • A New Method for Predicting Protein Secondary Structures Based on Stochastic Tree Grammars.
        Abe, N; Mamitsuka, H
        Proceedings of the Eleventh International Conference on Machine Learning (ML 94), Jul. 1994, Peer-reviewed
      • A New Method for Predicting Long-range Interactions between Amino Acid Residues Based-on Homological Correlations
        Mamitsuka Hiroshi
        GI, 1994
      • Prediction of Beta-Sheet Structures Using Stochastic Tree Grammars
        Mamitsuka Hiroshi; Abe Naoki
        GI, 1994
      • Protein Alpha-Helix Region Prediction Based on Stochastic Rule Learning.
        Mamitsuka, H; Yamanishi, K
        Proceedings of the Twenty-sixth Annual Hawaii International Conference on System Sciences (HICSS 26), Jan. 1993, Peer-reviewed
      • Representing Inter-residue Dependencies in Protein Sequences with Probabilistic Networks
        Mamitsuka Hiroshi
        GI, 1993
      • Protein Secondary Structure Prediction Based on Stochastic Rule Learning.
        Mamitsuka, H; Yamanishi, K
        Lecture Notes in Computer Science (Proceedings of the Third Annual Workshop on Algorithmic Learning Theory (ALT 92)), Oct. 1992, Peer-reviewed
      • Protein α-Helix Region Prediction Using Stochastic-Rule Learning
        Mamitsuka Hiroshi; Yamanishi Kenji
        GI, 1992

      Misc.

      • カルパインの基質切断部位の予測
        大内史子; 小山傑; 小山傑; 小野弥子; 秦勝志; 尾嶋孝一; 尾嶋孝一; 進藤真由美; DE VERLE David; DE VERLE David; 土井奈穂子; 瀧川一学; 瀧川一学; 馬見塚拓; 反町洋之
        日本病態プロテアーゼ学会学術集会プログラム抄録集, 2016
      • Clustering Features based on Simultaneous Manifold Learning
        烏山 昌幸; 馬見塚 拓
        電子情報通信学会技術研究報告 = IEICE technical report : 信学技報, 26 Nov. 2015
      • Similarity Adaptation for Label Propagation based on Local Linear Reconstruction
        KARASUYAMA Masayuki; MAMITSUKA Hirhoshi
        電子情報通信学会技術研究報告 : 信学技報, 04 Mar. 2013
      • カルパインの特性を規定する基質特異性の定量的構造-活性相関解析
        大内史子; 小山傑; 小山傑; 進藤真由美; 馬見塚拓; 瀧川一学; 尾嶋孝一; 秦勝志; 小野弥子; 反町洋之
        日本農芸化学会大会講演要旨集(Web), 2017
      • Propagating Labels via Sparse Combination of Multiple Graphs
        KARASUYAMA Masayuki; MAMITSUKA Hiroshi
        電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning, 31 Oct. 2012
      • Finding Approximate Frequent Patterns from DNA Sequences
        NAKAMURA Atsuyoshi; TAKIGAWA Ichigaku; TOSAKA Hisashi; KUDO Mineichi; MAMITSUKA Hiroshi
        人工知能学会人工知能基本問題研究会資料, 26 Jan. 2012
      • Enumerating Biclusters on Gene Expression Data by Mining Frequent Itemsets
        TAKAHASHI Keiichiro; TAKIGAWA Ichigaku; MAMITSUKA Hiroshi
        情報計算化学生物学会大会予稿集, 08 Nov. 2011
      • ロバスト相関係数差とP-値による交互作用遺伝子対の効率的検出手法
        茅野光範; 茅野光範; 瀧川一学; 瀧川一学; 志賀元紀; 志賀元紀; 津田宏治; 津田宏治; 馬見塚拓; 馬見塚拓
        統計関連学会連合大会講演報告集, 2010
      • Parametric summarization of frequent subgraphs for characterizing structural features of bioactive compounds
        TAKIGAWA Ichigaku; MAMITSUKA Hiroshi
        Proc Annu Conf Jpn Soc Bioinform, 2010
      • Finding three-way gene interactions from transcript and genotype data
        KAYANO Mitsunori; TAKIGAWA Ichigaku; SHIGA Motoki; TSUDA Koji; MAMITSUKA Hiroshi
        Proc Annu Conf Jpn Soc Bioinform, 2010
      • iTRAQを用いた多重ペプチド鎖切断分析によるカルパイン基質配列特異性の解析
        小山傑; 小山傑; 秦勝志; 小野弥子; 上野美香; 瀧川一学; 馬見塚拓; 阿部啓子; 反町洋之; 反町洋之
        日本農芸化学会大会講演要旨集, 2009
      • iTRAQを用いた多重ペプチド鎖切断分析によるカルパイン基質配列特異性の解析
        小山傑; 小山傑; 秦勝志; 小野弥子; 尾嶋孝一; 尾嶋孝一; 林智佳子; 林智佳子; 北村ふじ子; 土井菜穂子; 土井菜穂子; 瀧川一学; 松島由典; 阿部啓子; 馬見塚拓; 反町洋之; 反町洋之
        日本蛋白質科学会年会プログラム・要旨集, 2008
      • 酵素遺伝子の発現情報に基づく効率的な代謝経路ランキング
        瀧川一学; 馬見塚拓
        統計関連学会連合大会講演報告集, 2008
      • Developing a Substrate Predictor with Sequence information
        MATSUSHIMA Yoshifumi; TAKIGAWA Ichigaku; ONO Yasuko; SORIMACHI Hiroyuki; MAMITSUKA Hiroshi
        Proc Annu Conf Jpn Soc Bioinform, 2008
      • Association of SNPs with Multiple Genes Using a Nonlinear Regression Model
        KAYANO Mitsunori; TAKIGAWA Ichigaku; SHIGA Motoki; TSUDA Koji; MAMITSUKA Hiroshi
        Proc Annu Conf Jpn Soc Bioinform, 2008
      • Efficiently finding significant substructural patterns conserved in glycans
        TAKIGAWA Ichigaku; HASHIMOTO Kosuke; SHIGA Motoki; KANEHISA Minoru; MAMITSUKA Hiroshi
        Proc Annu Conf Jpn Soc Bioinform, 2008
      • Gene Sequence Ranking Based on Expression Profiles for Metabolic Pathway Analysis
        TAKIGAWA ICHIGAKU; MAMITSUKA HIROSHI
        情報処理学会研究報告, 09 Feb. 2006
      • A profile HMM for tree structures to locate glycan structure profiles
        KF Aoki-Kinoshita; N Ueda; H Mamitsuka; S Goto; M Kanehisa
        GLYCOBIOLOGY, Nov. 2005
      • Application of a probabilistic tree model for determining profiles in glycan tree structures
        AOKI KINOSHITA Kiyoko F.; UEDA Nobuhisa; MAMITSUKA Hiroshi; GOTO Susumu; KANEHISA Minoru
        IPSJ SIG technical reports, 07 Oct. 2005
      • Mining literature co-occurrence data using a probabilistic model
        ZHU Shanfeng; OKUNO Yasushi; TSUJIMOTO Gozoh; MAMITSUKA Hiroshi
        IPSJ SIG technical reports, 07 Oct. 2005
      • プロファイル確率兄弟依存木マルコフモデルを用いた糖鎖モチーフの効率的な検出
        木下聖子; 上田展久; 馬見塚拓; 金久実
        日本糖質学会年会要旨集, 2005
      • Glycan tree alignment and substitution matrix for finding relationships between glycan linkages
        KF Aoki; M Kanehisa; H Mamitsuka
        GLYCOBIOLOGY, Nov. 2004
      • Learning personal preference functions using boolean-variable real-valued multivariate polynomials
        Nakamura Atsuyoshi; Mamitsuka Hiroshi; Toba Hiroyasu; Abe Naoki
        全国大会講演論文集, 06 Mar. 1996
      • Potein Secondary Structure Prediction Using Stochas-tic Tree Grammer Learning
        馬見塚 拓; 安倍 直樹
        全国大会講演論文集, 27 Sep. 1993

      Presentations

      • Hypergraph for predicting adverse drug reaction
        Hiroshi Mamitsuka
        Computer Science Colloquium, 24 May 2023, City University of Hong Kong
      • Hypergraph for predicting adverse drug reactions
        Hiroshi Mamitsuka
        Seminar, 24 Mar. 2023, University of Malaya
      • Churn analysis - Machine learning approach -
        Hiroshi Mamitsuka
        Seminar, 21 Mar. 2023, University of Malaya
      • Hypergraph for predicting adverse drug reactions
        Hiroshi Mamitsuka
        Forest Workshop, 27 Feb. 2023
      • Hypergraph for predicting adverse drug reaction
        Hiroshi Mamitsuka
        Seminar, 17 Feb. 2023, Hokkaido University
      • Hypergraph for predicting adverse drug reactions
        Hiroshi Mamitsuka
        Seminar, 19 Oct. 2022, Humboldt University Berlin
      • Hypergraph for predicting adverse drug reactions
        Hiroshi Mamitsuka
        21st International Conference on Systems Biology (ICSB 2022), 12 Oct. 2022, Invited
      • Exploring phenotype patterns of breast cancer within somatic mutations
        Hiroshi Mamitsuka
        2nd International Congress of Asian Oncology Society (AOS 2022), 16 Jun. 2022, Invited
      • Progress and results of AI-CropPro project
        Hiroshi Mamitsuka
        Final Seminar of Novel Applications of Artificial Intelligence in Physical Sciences and Engineering Research (AIPSE) (AIPSE Closing Seminar), 30 Mar. 2022, Academy of Finland, Invited
      • Label Propagation over Multiple Graphs
        Hiroshi Mamitsuka
        1st International Conference on Computational Science and Data Analytics (COMDATA 2021), 24 Nov. 2021, Invited
      • バイオインフォマティクスのためのグラフによるデータ統合型機械学習
        馬見塚 拓
        第10回生命医薬情報学連合大会(IIBMP2021)、ワークショップ:人工知能と生命誌に基づく生命医科学のためのバイオインフォマティクス, 28 Sep. 2021, 日本バイオインフォマティクス学会(JSBi)
      • Machine learning for predicting drug-target interactions
        Hiroshi Mamitsuka
        15th World Congress of Societies of Biological Psychiatry, S-05 | Big biological data, data integration and learning algorithms in deciphering major depression and its treatments, 28 Jun. 2021, World Federation of Societies of Biological Psychiatry, Invited
      • Graph-based Machine Learning
        Hiroshi Mamitsuka
        Seminar, 15 Apr. 2021, Hokkaido University
      • Fast and Robust Multi-view Multi-task Learning through Group Sparsity
        Hiroshi Mamitsuka
        Seminar, 13 Feb. 2020, IBM T. J. Watson Research Center
      • Computational Metabolic Identification from Mass Spectra -- Machine Learning Approach --
        Hiroshi Mamitsuka
        Seminar, 23 Jan. 2020, Humboldt University Berlin
      • Graph-based Machine Learning
        Hiroshi Mamitsuka
        Seminar, 03 Dec. 2019, University of Malaya
      • Machine Learning Techniques and Applications: Past, Present and Future
        Hiroshi Mamitsuka
        DSx Conference 2019, 26 Nov. 2019, Perdana University, Invited
      • Graph-smooth, Data-integrative Machine Learning for Bioinformatics
        Hiroshi Mamitsuka
        Seminar, 20 Aug. 2019, Shenzhen University
      • Graph-smooth, Data-integrative Machine Learning for Bioinformatics
        Hiroshi Mamitsuka
        Seminar, 28 Jun. 2019, Perdana University, Invited
      • Similarity-based Machine Learning Approaches for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Seminar, 26 Jun. 2019, University of Malaya, Invited
      • Graph-regularized, Data-integrative Machine Learning for Bioinformatics
        Hiroshi Mamitsuka
        Seminar, 21 Jun. 2019, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Invited
      • Graph-based Machine Learning
        Hiroshi Mamitsuka
        Seminar, 20 Jun. 2019, Fudan University, Invited
      • Graph-based Machine Learning
        Hiroshi Mamitsuka
        Workshop on Bioinformatics and Data Analysis, 14 Jun. 2019, Xi'an Jiao Tong University, Invited
      • Graph-based Machine Learning
        Hiroshi Mamitsuka
        Seminar, 10 May 2019, Kyushu Institute of Technology
      • Machine Learning for Biological Sciences
        馬見塚 拓
        セミナー, 30 Nov. 2018, 国立国際医療研究センター研究所, Invited
      • 機械学習による生物科学応用
        馬見塚 拓
        第1245回生物科学セミナー, 28 Nov. 2018, 東京大学理学部生物科学科, Invited
      • Graph-regularized, Data-integrative Machine Learning for Bioinformatics
        Hiroshi Mamitsuka
        Seminar, 17 Nov. 2018, Ho Chi Minh City National University of Science, Invited
      • Graph-based Machine Learning
        Hiroshi Mamitsuka
        5th SHTP Annual International Conference 2018, 16 Nov. 2018, Invited
      • Database, prediction and beyond
        馬見塚 拓
        反町洋之博士 追悼記念シンポジウム~Three Decades of Calpain~, 30 Jul. 2018, Invited
      • Data Integrative Machine Learning for Bioinformatics
        Hiroshi Mamitsuka
        Second Belgrade BioInformatics Conference (BelBi 2018), 21 Jun. 2018, Invited
      • Label Propagation over Multiple Graphs
        Hiroshi Mamitsuka
        Seminar, 22 Mar. 2018, ThuyLoi University, Invited
      • Applying "Learning to Rank" to Large-scale MeSH Indexing
        Hiroshi Mamitsuka
        Seminar, 20 Mar. 2018, Hanoi University of Science and Technology, Invited
      • Similarly-based Machine Learning Approaches for Predicting Drug-target Interactions
        Hiroshi Mamitsuka
        Sixth International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2018), 16 Mar. 2018, Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Internal Seminar, 20 Apr. 2017, Keio University
      • Learning to Rank: Applications to Bioinformatics
        Hiroshi Mamitsuka
        Seminar, Machine Learning Coffee Series, 27 Mar. 2017, University of Helsinki and Aalto University, Invited
      • 機械学習・データマイニング技術/応用の過去・現在 そして未来
        馬見塚 拓
        人工知能学会 第102回人工知能基本問題研究会(SIG-FPAI), 12 Dec. 2016, 人工知能学会, Invited
      • Machine Learning Applications:Past, Present and Future
        Hiroshi Mamitsuka
        Fifth International Symposium on Integrated Uncertainty in Knowledge Modeling and Decision Making (IUKM 2016), 30 Nov. 2016, Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Seminar, 29 Nov. 2016, University of Engineering and Technology, National University of Vietnam in Hanoi
      • Label Propagation over Multiple Graphs
        Hiroshi Mamitsuka
        Seminar, 28 Nov. 2016, Hanoi University of Science and Technology
      • Recent Development in Bioinformatics
        馬見塚 拓
        セミナー, 27 Jul. 2016, 協和発酵キリン株式会社 探索研究所, Invited
      • Machine Learning for Predicting Cleavability of Calpain Proteolysis
        Hiroshi Mamitsuka
        'The Biology of Calpain in Health and Disease', FASEB Science Research Conference, 17 Jul. 2016, Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Seminar, 03 Dec. 2015, Humboldt-Universitat zu Berlin, Invited
      • Greetings from Kyoto
        Hiroshi Mamitsuka
        Caroline von-Humboldt Professorship Award Ceremony, 01 Dec. 2015, Humboldt-Universitat zu Berlin, Invited
      • Panel session
        Hiroshi Mamitsuka
        CIM Workshop on Machine Learning, 09 Oct. 2015, Uppsala University, Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        CIM Workshop on Machine Learning, 08 Oct. 2015, Uppsala University, Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Seminar, 21 Jan. 2015, National Tsing Hua University, Invited
      • Mining from Biological Networks: Preserving Network Localities
        Hiroshi Mamitsuka
        Seminar, 24 Oct. 2014, Fudan University, Invited
      • Mining from Biological Networks: Preserving Network Localities
        Hiroshi Mamitsuka
        Seminar, 30 Sep. 2014, Lille 1 University, Invited
      • Data-integrative Approach for Genomics
        Hiroshi Mamitsuka
        Sweden-Kyoto Symposium 2014, 12 Sep. 2014, Kyoto University, Invited
      • Mining from Biological Networks: Preserving Network Localities
        Hiroshi Mamitsuka
        2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, 22 May 2014, Computational Intelligence Society, IEEE, Invited
      • Roundtable: Future Directions in Computational Intelligence in Bioinformatics Research
        Hiroshi Mamitsuka
        2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, 21 May 2014, Computational Intelligence Society, IEEE, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        euSYSBIO ? Master・Efs Degree Programme in Computational and Systems Biology, 28 Apr. 2014, Erasmus Mundus, Invited
      • Mining Patterns from Trees
        Hiroshi Mamitsuka
        euSYSBIO ? Master・Efs Degree Programme in Computational and Systems Biology, 25 Apr. 2014, Erasmus Mundus, Invited
      • Mining Patterns from Sequences: Hidden Markov Models and Learning
        Hiroshi Mamitsuka
        euSYSBIO ? Master・Efs Degree Programme in Computational and Systems Biology, 24 Apr. 2014, Erasmus Mundus, Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Seminar, Lille 1 University, 26 Mar. 2014, Centre Europ?en pour les Math?matiques, la Physique et leurs interactions (CEMPI), Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Trends in Machine Learning (TML) 2014, 18 Mar. 2014, Kyoto University, Invited
      • Collaborative Matrix Factorization for Predicting Drug-Target Interactions
        Hiroshi Mamitsuka
        Seminar, 03 Feb. 2014, Aalto University, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Seminar, 20 Dec. 2013, National University of Singapore, Invited
      • Label Propagation over Graphs
        Hiroshi Mamitsuka
        Seminar, 19 Dec. 2013, Institute for Infocomm Research (I2R), A*STAR, Singapore, Invited
      • Efficiently Detecting Switching Mechanisms in Gene Expression
        Hiroshi Mamitsuka
        24th International Conference on Genome Informatics (GIW 2013), 17 Dec. 2013, Invited
      • Introduction of Institute for Chemical Research, Kyoto University
        Hiroshi Mamitsuka
        The HUPO Initiative Assembly in Kyoto, 19 Sep. 2013, HUPO, Invited
      • Mining Significant Substructure Pairs from Drug-Target Network
        馬見塚 拓
        日本バイオインフォマティクス学会 第17回創薬インフォマティクス研究会, 11 Sep. 2013, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Kyoto University - Koc University Symposium ``New Frontiers in Health Sciences & Technologies", 07 Sep. 2013, Kyoto University, Invited
      • Opening Remark
        Hiroshi Mamitsuka
        2013 International Workshop on Machine Learning and Applications to Biology, 05 Aug. 2013, Hokkaido University
      • Opening and Closing Remarks
        Hiroshi Mamitsuka
        13th Annual International Workshop on Bioinformatics and Systems Biology, 31 Jul. 2013
      • Machine Learning for Bioinformatics
        Hiroshi Mamitsuka
        FASEB Science and Research Conference, ``The Biology of Calpains in Health and Disease'', 22 Jul. 2013, Federation of American Societies for Experimental Biology (FASEB), Invited
      • Label Propagation over Graphs
        Hiroshi Mamitsuka
        Seminar, 08 Mar. 2013, Mitsubishi Electric Research Laboratories, Invited
      • Mining Metabolic Pathways through Gene Expression
        馬見塚 拓
        日本バイオインフォマティクス学会 九州地域部会 セミナー, 08 Feb. 2013, 九州大学生体防御医学研究所セミナー, Invited
      • Mining Metabolic Pathways through Gene Expression
        馬見塚 拓
        第1回JHUPOサテライトシンポジウム, 18 Jan. 2013, Invited
      • Label Propagation over Graphs
        Hiroshi Mamitsuka
        Seminar, 17 Dec. 2012, Noah's Ark Lab, Huawei, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Kyoto University - Durham University Joint International Symposium, 28 Nov. 2012, Invited
      • 遺伝子発現データ解析 —スイッチング機構の発見とパスウェイマイニング—
        馬見塚 拓
        第15回新潟プロテオミクスフォーラム, 20 Nov. 2012, 新潟, Invited
      • Label Propagation over Graphs
        Hiroshi Mamitsuka
        Seminar, 08 Oct. 2012, IBM T. J. Watson Research Center, Invited
      • Mining Subgraph-Subsequence Pairs from Drug-Target Network
        Hiroshi Mamitsuka
        2012 Workshop on Pharmaco-Informatics for Drug Discovery, in Conjunction with 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2012), 04 Oct. 2012, Computer Society, IEEE, Invited
      • Opening Remark
        Hiroshi Mamitsuka
        2012 Sapporo Workshop on Machine Learning and Application to Biology (MLAB), 06 Aug. 2012, Hokkaido University, Invited
      • Machine Learning for Systems Biology
        Hiroshi Mamitsuka
        Faculty Lab Presentation, International Workshop of Bioinformatics and Systems Biology 2012, 26 Jul. 2012, Boston University, Invited
      • Efficiently Detecting Switching Mechanisms in Gene Expression
        馬見塚 拓
        セミナー, 02 Feb. 2012, 協和発酵キリン株式会社 探索研究所, Invited
      • 薬剤−ターゲットネットワークからの部分構造パタン検出と解析
        馬見塚 拓
        高知大学大学院医学専攻DCセミナー(大学院公開セミナー), 30 Jan. 2012, 高知大学医学部, Invited
      • Clustering over Graphs: Probabilistic Model based Approach
        Hiroshi Mamitsuka
        Seminar in Information Systems and Applications, 23 Nov. 2011, National Tsing Hua University, Invited
      • Label Propagation over Graphs
        Hiroshi Mamitsuka
        Seminar, National Tsing Hua University, 22 Nov. 2011, National Tsing Hua University
      • Efficient Label Propagation over Graphs
        Hiroshi Mamitsuka
        Seminar, 14 Nov. 2011, Fudan University
      • Data Mining-based Approach for Drug-Target Prediction
        Hiroshi Mamitsuka
        Invited Tutorial, 2011 International Conference on Neural Information Processing (ICONIP), Tutorials, 13 Nov. 2011, Invited
      • 生命科学上の非構造化データからのマイニング
        馬見塚 拓
        第13回新潟プロテオミクスフォーラム, 26 Oct. 2011, Invited
      • Opening Remark
        Hiroshi Mamitsuka
        ICR Symposium to Celebrate the Bioinformatics Center's 10 Year Anniversary and New Restructuring, 29 Aug. 2011, Institute for Chemical Research (ICR), Kyoto University, Invited
      • Mining from Graphs
        Hiroshi Mamitsuka
        FICS Summer School, 24 Aug. 2011, Finnish Doctoral Programme in Computational Sciences (FICS), Invited
      • 代謝ネットワークからのマイニング
        馬見塚 拓
        教育セミナー、日本プロテオーム学会2011年大会, 28 Jul. 2011, Invited
      • Probabilistic Models for Labelled Ordered Trees: Applications to Glycans
        Hiroshi Mamitsuka
        Summer School 2011, 22 Jul. 2011, Computational Systems Biology, DFG-GRADUIERTENKOLLEG 1772 - Research Training Group
      • Mining Significant Substructure Pairs from Drug-Target Network
        馬見塚 拓
        セミナー, 21 Jun. 2011, 協和発酵キリン株式会社 探索研究所, Invited
      • Mining Significant Substructure Pairs from Drug-Target Network
        Hiroshi Mamitsuka
        Seminar, 26 May 2011, University of Strasbourg
      • PathRanker: Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Seminar, 24 May 2011, Institute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, Invited
      • Mining Significant Substructure Pairs from Drug-Target Network
        Hiroshi Mamitsuka
        Seminar, 16 May 2011, Fudan University, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        The 2nd Workshop on Bioinformatics for Medical and Pharmaceutical Research, 28 Feb. 2011, Curie Institute, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Seminar, 23 Feb. 2011, Humboldt University, Computational Systems Biology, DFG-GRADUIERTENKOLLEG 1772 - Research Training Group, Invited
      • Clustering over Graphs: Probabilistic Model based Approach
        Hiroshi Mamitsuka
        Seminar, 20 Jan. 2011, National Cheng Kung University, Invited
      • Clustering Genes by Using Expression and Gene Network Topology
        Hiroshi Mamitsuka
        Seminar, 19 Jan. 2011, National Cheng Kung University, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Seminar, 30 Dec. 2010, Fudan University, Invited
      • Clustering over Graphs: Probabilistic Model Based Approach
        Hiroshi Mamitsuka
        Seminar, 28 Dec. 2010, Shanghai Jiao Tong University, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Seminar, 27 Dec. 2010, Shanghai Institutes for Biological Sciences, Invited
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        Seminar, 10 Dec. 2010, Boston College, Invited
      • Clustering Genes by Using Expression and Gene Network Topology
        Hiroshi Mamitsuka
        Seminar, 08 Dec. 2010, Boston University, Invited
      • 生命科学上の非構造化データの統合マイニング
        馬見塚 拓
        バイオインフォマティクス推進センター事業、第6回研究開発成果報告会, 10 Nov. 2010, 品川
      • Mining Metabolic Pathways through Gene Expression
        Hiroshi Mamitsuka
        2010 Systems Biology and Bioinformatics Symposium (SBBS), 05 Nov. 2010, Taiwan Society for Bioinformatics and Systems Biology (TBSB), Invited
      • ライフサイエンスデータからのマイニング
        馬見塚 拓
        第17回京都大学化学研究所 公開講演会, 24 Oct. 2010
      • Probabilistic Model Learning for Clustering with Multiple Graphs
        Hiroshi Mamitsuka
        Seminar, 18 Oct. 2010, Fudan University, Invited
      • Probabilistic Model Learning for Clustering with Multiple Graphs
        Hiroshi Mamitsuka
        Seminar, 15 Oct. 2010, SooChow University, Invited
      • Clustering over Graphs
        Hiroshi Mamitsuka
        Second International Seminar on Business and Information Management (ISBIM 2010), 13 Sep. 2010, Invited
      • ネットワークからの遺伝子クラスタリング
        馬見塚 拓
        公開シンポジウム“統合複雑系科学への招待”, 05 Aug. 2010, Invited
      • Ranking Metabolic Paths Based on Adjacent Pairwise Coexpression
        Hiroshi Mamitsuka
        Seminar, 13 May 2010, Fudan University, Invited
      • Efficiently Detecting a Switching Mechanism in Gene Expression
        Hiroshi Mamitsuka
        Seminar, 22 Mar. 2010, Curie Institute, Invited
      • Efficiently Finding a Switching Mechanism in Gene Expression
        Hiroshi Mamitsuka
        Seminar, 16 Mar. 2010, Fudan University, Invited
      • Mining patterns from trees - Probabilistic model-based approach
        馬見塚 拓
        日本バイオインフォマティクス学会 第9回北海道地域部会セミナー, 08 Feb. 2010, 北海道大学, Invited
      • Mining Significant Patterns from Carbohydrate Sugar Chains
        Hiroshi Mamitsuka
        Seminar, 09 Oct. 2009, Humboldt University, Invited
      • Mining Significant Patterns from Glycan Structures
        Hiroshi Mamitsuka
        International Beilstein Symposium on Glyco-Bioinformatics, 05 Oct. 2009, Beilstein Institute, Invited
      • A Markov Classification Model for Metabolic Pathways
        Hiroshi Mamitsuka
        Seminar, 29 Sep. 2009, Fudan University, Invited
      • Mining Significant Patterns from Trees
        Hiroshi Mamitsuka
        TISE Summer School on Statistical Modeling and Machine Leraning in Computational Systems Biology, 24 Jun. 2009, Tampere Graduate School in Information Science and Engineering (TISE), Invited
      • Probabilistic Models for Mining from Labeled Ordered Trees: Application to Glycobiology
        Hiroshi Mamitsuka
        TISE Summer School on Statistical Modeling and Machine Leraning in Computational Systems Biology, 24 Jun. 2009, Tampere Graduate School in Information Science and Engineering (TISE), Invited
      • Learning Probabilistic Models for Time-series Data: Hidden Markov Models
        Hiroshi Mamitsuka
        TISE Summer School on Statistical Modeling and Machine Leraning in Computational Systems Biology, 22 Jun. 2009, Tampere Graduate School in Information Science and Engineering (TISE), Invited
      • Clustering with Heterogeneous Data
        Hiroshi Mamitsuka
        IEEE International Conference on Computational Intelligence and Natural Computing (CINC 2009), 06 Jun. 2009, Invited
      • Mining Significant Patterns from Trees
        Hiroshi Mamitsuka
        Seminar, 28 May 2009, Universit? Louis Pasteur, Invited
      • A Probabilistic Model-based Approach for Mining Chemical Compound-Gene Co-occurrences from Biomedical Texts
        Hiroshi Mamitsuka
        Seminar, 25 May 2009, Universit? Louis Pasteur, Invited
      • Mining Significant Patterns from Trees
        Hiroshi Mamitsuka
        Bioinformatics Workshop, 13 May 2009, Shanghai Key Laboratory of Intelligent Information Processing, Invited
      • Mining Significant Patterns from Trees
        Hiroshi Mamitsuka
        Seminar, 24 Mar. 2009, I2R, A*STAR, Singapore, Invited
      • 発現情報に基づく効率的な代謝経路ランキング手法を適用したリグニン生合成経路解析
        馬見塚 拓
        科研費ワークショップ「生薬とバイオインフォマティクス」, 15 Jan. 2009, Invited
      • Mining Significant Patterns from Trees
        Hiroshi Mamitsuka
        IEEE International Symposium on Knowledge Acquisition and Modeling (KAM 2008), 21 Dec. 2008, Beijin Section, IEEE; HuaZhong Normal Uniersity, Invited
      • Clustering Genes with Microarray Expressions and Gene Networks
        Hiroshi Mamitsuka
        Seminar, 22 Oct. 2008, Max Planck Institute for Biological Cybernetics, Invited
      • 半構造化データからのマイニング
        馬見塚 拓
        葉山セミナー, 14 Oct. 2008, 総合研究大学院大学先導科学研究科, Invited
      • Clustering Numerical Vectors with a Modularity Network
        Hiroshi Mamitsuka
        Workshop on "Relations with Computer Science", Foundations of Computational Mathematics (FoCM'08), 22 Jun. 2008, Invited
      • ベクトル形式データとネットワークデータを統合したクラスタリング
        馬見塚 拓
        電子情報通信学会「パターン認識・メディア理解研究会」「データ工学研究会」共催、2008年6月研究会, 19 Jun. 2008, 電子情報通信学会, Invited
      • Clustering Numerical Vectors with a Modularity Network
        馬見塚 拓
        セミナー, 17 Jun. 2008, 奈良先端科学技術大学院大学, Invited
      • Clustering Numerical Vectors with a Modularity Network
        Hiroshi Mamitsuka
        Seminar, 27 May 2008, University of Melbourne, Invited
      • Data-integrative Informatics for Chemical Genomics
        Hiroshi Mamitsuka
        Systems Biology Workshops - From Molecules to Life -, 27 May 2008, Invited
      • Clustering Numerical Vectors with Modularity Networks
        Hiroshi Mamitsuka
        Seminar, 13 Dec. 2007, Helsinki University of Technology, Invited
      • Opening Address
        Hiroshi Mamitsuka
        Eighteenth International Conference on Genome Informatics, 03 Dec. 2007, Invited
      • An Integrative Approach for Gene Annotation based on Spectral Clustering and Network Modularity
        Hiroshi Mamitsuka
        AASBi Symposium, 02 Dec. 2007, The Association of Asian Societies for Bioinformatics (AASBi), Invited
      • Clustering Numerical Vectors with Modularity Networks
        Hiroshi Mamitsuka
        Seminar, 28 Nov. 2007, Institute for Infocomm Research (I2R), A*STAR, Singapore, Invited
      • Informatics Innovations in Glycogenomics
        馬見塚 拓
        21世紀COEプログラム「ゲノム科学の知的情報基盤・研究拠点形成」最終年度公 開シンポジウム:Symposium on Bioinformatics and Chemical Genomics, 20 Sep. 2007, 21世紀COEプログラム「ゲノム科学の知的情報基盤・研究拠点形成」, Invited
      • Random Field, Network Modularity, Spectral Clustering and Beyond
        Hiroshi Mamitsuka
        International Conference on Intelligent Computing (ICIC 2007), 22 Aug. 2007, Invited
      • Clustering Numerical Vectors with a Modular Network
        Hiroshi Mamitsuka
        Seminar, 10 Aug. 2007, University of California, Berkeley, Invited
      • Closing Remark
        Hiroshi Mamitsuka
        International Symposium on Bioinformatics Education and Research, 17 Dec. 2006, Education and Research Organization for Genome Information Science, Invited
      • A Probabilistic Model for Mining Labeled Ordered Trees and Its Application to Capturing Patterns in Carbohydrate Sugar Chains
        Hiroshi Mamitsuka
        International Workshop on Scientific Computing: Models, Algorithms and Applications, 08 Dec. 2006, Invited
      • Learning a Probabilistic Model for Labeled Ordered Trees
        Hiroshi Mamitsuka
        Second Japan-Taiwan Bilateral Symposium on Bioinformatics, 09 Nov. 2006, Interchange Association, Invited
      • Learning Probabilistic Models for Mining Labeled Ordered Trees
        Hiroshi Mamitsuka
        Third Japanese-German Frontiers of Sciences Symposium, 03 Nov. 2006, https://www.humboldt-foundation.de/web/5060.html, Invited
      • バイオインフォマティクス先端技術の現状と展望
        馬見塚 拓
        セミナー, 26 Sep. 2006, 協和発酵工業 バイオフロンティア研究所, Invited
      • A New Probabilistic Model for Mining Labeled Ordered Trees
        Hiroshi Mamitsuka
        Seminar, 24 Aug. 2006, IBM T. J. Watson Research Center, Invited
      • 能動学習を用いた効率的なMHC結合ペプチド予測
        馬見塚 拓
        臨床研セミナー, 25 May 2006, 東京都臨床医学総合研究所, Invited
      • Biological Sequence Analysis with a Probabilistic Model
        馬見塚 拓
        セミナー, 28 Mar. 2006, 千葉大学, Invited
      • Probabilistic Model for Mining Labeled Ordered Trees: Capturing Patterns in Carbohydrate Sugar Chains
        Hiroshi Mamitsuka
        Seminar, 23 Mar. 2006, National University of Singapore, Invited
      • Probabilistic Model for Mining Labeled Ordered Trees: Capturing Patterns in Carbohydrate Sugar Chains
        Hiroshi Mamitsuka
        Seminar, 21 Mar. 2006, Institute for Infocomm Research (I2R), A*STAR, Singapore, Invited
      • A Probabilistic Model-based Approach for Biomedical Text Mining
        Hiroshi Mamitsuka
        First Japan-Taiwan Bilateral Symposium on Bioinformatics, 14 Mar. 2006, Interchange Association, Invited
      • Opening Remark
        Hiroshi Mamitsuka
        Sixteenth International Conference on Genome Informatics, 19 Dec. 2005, Invited
      • バイオインフォマティクス人材養成のあるべき姿とは?
        馬見塚 拓
        産業技術総合研究所 生命情報科学人材養成コース 最終シンポジウム「バイオインフォマティクス人材養成5年の歩み お台場から世界に向けて」, 22 Sep. 2005, 産業技術総合研究所 生命情報科学センター, Invited
      • マルコフ連鎖の有限混合モデルによるマイクロアレイデータからの代謝パスウェイ解析
        馬見塚 拓
        統計関連学会連合大会企画セッション「アレイデータ解析周辺にみる新しい統計的視点」, 13 Sep. 2005, Invited
      • バイオインフォマティクス先端技術の現状と展望
        馬見塚 拓
        セミナー, 27 Jun. 2005, シスメックス株式会社中央研究所・テクノセンター, Invited
      • バイオインフォマティクス先端技術の現状と展望
        馬見塚 拓
        セミナー, 25 Jun. 2005, キリンビール株式会社 医薬探索研究所, Invited
      • 糖鎖構造からのデータマイニング
        馬見塚 拓
        公開シンポジウム「ゲノムからケミカルゲノムへ」, 24 Mar. 2005, 京都大学21世紀COEプログラム「ゲノム科学の知的情報基盤・研究拠点形成」, Invited
      • 糖鎖構造からのデータマイニング
        馬見塚 拓
        セミナー, 02 Mar. 2005, 日本電気(株), Invited
      • 代謝パスウェイの発現プロファイルによる解析
        馬見塚 拓
        第27回日本分子生物学会年会ワークショップ, 09 Dec. 2004, Invited
      • バイオインフォマティクスへの機械学習応用
        馬見塚 拓
        バイオインフォマティクス夏の学校, 21 Jul. 2004, 日本バイオインフォマティクス学会, Invited
      • プロテオームインフォマティクスの現状と展望
        馬見塚 拓
        日本SGIソリューションフェア2003, 05 Nov. 2003, 日本SGI, Invited
      • ゲノム・プロテオーム情報のデータマイニング
        馬見塚 拓
        京都市酒蔵バイオVIL開所一周年記念事業 「21世紀COEシンポジウム」, 11 Aug. 2003, 京都大学21世紀COEプログラム「ゲノム科学の知的情報基盤・研究拠点形成」, Invited
      • Hierarchical Latent Knowledge Analysis on Co-occurrence Data
        馬見塚 拓
        情報処理学会、電子情報通信学会北海道支部共催講演会, 24 Jun. 2003, 情報処理学会、電子情報通信学会, Invited
      • 潜在変数モデルによるタンパク質相互作用の予測
        馬見塚 拓
        第3回日本蛋白質科学会年会ワークショップ(プロテインインフォマティクス), 23 Jun. 2003, 日本蛋白質科学会, Invited
      • 階層型潜在変数モデルによるタンパク質間相互作用の予測
        馬見塚 拓
        第1回「高次構造からみるプロテオーム機能発現メカニズム」研究会, 21 May 2003, Invited
      • Predicting Protein-Protein Interactions with Latent Variable Models
        Hiroshi Mamitsuka
        Second Asian Joint Workshop on Protein Informatics, 27 Feb. 2003, Invited
      • プロテオーム情報と低分子化合物情報の効率的な解析
        馬見塚 拓
        人工知能学会第23回分子生物情報研究会, 20 Jan. 2003, 人工知能学会, Invited
      • Active Ensemble Learning
        馬見塚 拓
        セミナー(コロキウム), 10 Mar. 2002, 京都大学化学研究所附属バイオインフォマティクスセンター, Invited
      • Active Ensemble Learning
        馬見塚 拓
        第4回情報論的学習理論ワークショップ(IBIS2001), 30 Jul. 2001, Invited
      • HMM及び確率的文法を用いたタンパク質構造・機能予測について
        馬見塚 拓
        第165回CBI研究講演会, 15 Dec. 1997, Chem-Bio Informatics Society (CBI学会), Invited
      • Predicting Beta-sheets Using Stochastic Tree Grammars
        馬見塚 拓
        セミナー(第2回ゲノム情報コロキウム), 22 Apr. 1996, 東京大学医科学研究所ヒトゲノム解析センター, Invited
      • 確率的規則に基づくタンパク質αヘリックス領域予測
        馬見塚 拓
        第55回日本行動計量学会シンポジウム, 27 Feb. 1993, 日本行動計量学会, Invited
      • Predicting Alpha-helix Using Stochastic Rule Learning
        馬見塚 拓
        遺伝子情報処理ワークショップ, 11 Nov. 1992, (財)新世代コンピュータ技術開発機構(ICOT), Invited

      Books and Other Publications

      Industrial Property Rights

      • US 11533862, US16/624,584, Method and system for selecting a plant variety
        Jussi Gillberg; Samuel Kaski; Pekka Marttinen; Hiroshi Mamitsuka
      • US 6973446, US20010003817, Knowledge finding method
        Hiroshi Mamitsuka; Naoki Abe
      • 特許3237606, 特開平11-296553, 特願平10-116084, 複数文字列アライメント方法およびシステム
        馬見塚 拓
      • 特許3094860, 特開平09-050289, 特願平07-219708, 隠れマルコフモデル学習システム及び学習方法
        馬見塚 拓
      • 特許3012441, 特開平07-105179, 特願平05-246805, タンパク質立体構造予測方法
        馬見塚 拓
      • 特許2980037, 特開平10-114792, 特願平08-268681, 構造分割装置
        馬見塚 拓
      • 特許2940529, 特開平10-095796, 特願平9-283233, タンパク質立体構造予測方法
        馬見塚 拓
      • 特許2870458, 特開平9-054780, 特願平7-227235, 学習装置及び学習方法
        馬見塚 拓; 中村 篤祥; 鳥羽 弘康
      • 特許2739825, 特開平08-069446, 特願平06-203547, タンパク質立体構造予測方法
        馬見塚 拓
      • 特許2658823, 特開平07-093286, 特願平05-233822, タンパク質立体構造予測方法
        馬見塚 拓; 安倍 直樹
      • 特許2551297, 特開平07-013959, 特願平04-124817, タンパク質立体構造予測方法
        馬見塚 拓; 山西 健司

      Awards

      • Nov. 2014
        Broad-DREAM Gene Essentiality Prediction Challenge, Best Performer
      • 2014
        IEEE Kansai Section, IEEE Kansai Section Medal
      • 2009
        IEEE Computer Society, Certificate of Appreciation, Service Award

      External funds: Kakenhi

      • Latent data structure estimation through integrating diverse data
        Grant-in-Aid for Scientific Research (B)
        Basic Section 61030:Intelligent informatics-related
        Kyoto University
        馬見塚 拓
        From 01 Apr. 2022, To 31 Mar. 2025, Granted
        機械学習
      • Development of new fabrication methods of polymer materials based on the structurally controlled hyperbranched polymers
        Grant-in-Aid for Scientific Research (S)
        Broad Section E
        Kyoto University
        山子 茂
        From 05 Jul. 2021, To 31 Mar. 2026, Granted
        超分岐ポリマー;デンドリマー;制御ラジカル重合;絡み合い;修復性材料;多分岐ポリマー;TERP;機能性高分子
      • Developing machine learning based bioinformatics to decipher hidden biology of depression symptoms
        Grant-in-Aid for JSPS Fellows
        Basic Section 51030:Pathophysiologic neuroscience-related
        Kyoto University
        From 13 Nov. 2020, To 31 Mar. 2023, Granted
        バイオインフォマティクス
      • Efficient estimation of data structure from multiple tensors
        Grant-in-Aid for Scientific Research (B)
        Basic Section 61030:Intelligent informatics-related
        Kyoto University
        馬見塚 拓
        From 01 Apr. 2019, To 31 Mar. 2022, Granted
        機械学習;高次元機械学習
      • Estimating the factor structure in multiple matrices
        Grant-in-Aid for Scientific Research (B)
        Kyoto University
        Hiroshi Mamitsuka
        From 01 Apr. 2016, To 31 Mar. 2019, Project Closed
        機械学習;行列分解;協調行列分解;データマイニング;知識発見とデータマイニング
      • Analysis of Repetition Structure in Huge Sequences
        Grant-in-Aid for Scientific Research (B)
        Hokkaido University
        Atsuyoshi Nakamura
        From 01 Apr. 2013, To 31 Mar. 2016, Project Closed
        知識発見とデータマイニング;シーケンスマイニング;ゲノム情報処理;頻出パターンマイニング
      • Estimating data structure embedded in semi-structured data
        Grant-in-Aid for Scientific Research (B)
        Kyoto University
        Hiroshi Mamitsuka
        From 01 Apr. 2012, To 31 Mar. 2016, Project Closed
        知識発見とデータマイニング;グラフマイニング;機械学習;生体生命情報学;人工知能;ゲノム;プロテオーム
      • 生体内化合物の効率的な比較、探索、発見アルゴリズムの開発
        Grant-in-Aid for Scientific Research on Priority Areas
        Biological Sciences
        Kyoto University
        馬見塚 拓
        From 01 Apr. 2004, To 31 Mar. 2005, Project Closed
        アルゴリズム;機械学習;生体生命情報学;プロテオーム
      • 生体高分子と結合する低分子化合物の効率的な比較、探索、発見アルゴリズムの開発
        Grant-in-Aid for Scientific Research on Priority Areas
        Biological Sciences
        Kyoto University
        馬見塚 拓
        From 01 Apr. 2003, To 31 Mar. 2004, Project Closed
        アルゴリズム;機械学習;生体生命情報学;プロテオーム

      External funds: others

      • International Research and Training Program of Bioinformatics and Systems Biology
        独立行政法人日本学術振興会 若手研究者インターナショナル・トレーニング・プログラム (ITP)
        From 01 Apr. 2013, To 31 Mar. 2014
        馬見塚 拓
      • International Research and Training Program of Bioinformatics and Systems Biology
        独立行政法人日本学術振興会 若手研究者インターナショナル・トレーニング・プログラム (ITP)
        From 01 Apr. 2012, To 31 Mar. 2013
        馬見塚 拓
      • International Research and Training Program of Bioinformatics and Systems Biology
        独立行政法人日本学術振興会 若手研究者インターナショナル・トレーニング・プログラム (ITP)
        From 01 Apr. 2011, To 31 Mar. 2012
        馬見塚 拓
      • International Research and Training Program of Bioinformatics and Systems Biology
        独立行政法人日本学術振興会 若手研究者インターナショナル・トレーニング・プログラム (ITP)
        From 01 Apr. 2010, To 31 Mar. 2011
        馬見塚 拓
      • International Research and Training Program of Bioinformatics and Systems Biology
        独立行政法人日本学術振興会 若手研究者インターナショナル・トレーニング・プログラム (ITP)
        From 01 Apr. 2009, To 31 Mar. 2010
        馬見塚 拓
      list
        Last Updated :2023/09/21

        Education

        Teaching subject(s)

        • From 01 Apr. 2023, To 31 Mar. 2024
          Research Proposal Writing Practice B
          8403, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          Research Proposal Writing Practice A
          8402, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          Industry-academia Collaborative Internship A
          8305, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          International Skills Practice A
          8303, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          Laboratory Practice in Medicinal Frontier Sciences
          4213, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          Pharmaceutical Laboratory Coaching Practice B
          8302, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          Pharmaceutical Laboratory Coaching Practice A
          8301, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          Advanced Bioinformatics for Drug Discovery
          8207, Fall, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2023, To 31 Mar. 2024
          Research Training(Bio-Knowledge Engineering)
          D174, Year-long, Faculty of Pharmaceutical Sciences, 10
        • From 01 Apr. 2023, To 31 Mar. 2024
          Research Training(Computational Genomics)
          D161, Year-long, Faculty of Pharmaceutical Sciences, 10
        • From 01 Apr. 2023, To 31 Mar. 2024
          Medicinal Frontier Science Research A
          8406, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2023, To 31 Mar. 2024
          Skill Development for Chemoinformatics
          5002, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2023, To 31 Mar. 2024
          Research in Medicinal Frontier Sciences
          3215, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2023, To 31 Mar. 2024
          Medicinal Frontier Science Research B
          8407, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2023, To 31 Mar. 2024
          Research Training(Computational Genomics)
          8161, Year-long, Faculty of Pharmaceutical Sciences, 6
        • From 01 Apr. 2023, To 31 Mar. 2024
          Seminar on Critical Reading of Scientific Papers A
          8404, Year-long, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Introduction to Bioinformatics for Drug Discovery
          8104, Spring, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Seminar in Medicinal Frontier Sciences
          2316, Year-long, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Seminar on Critical Reading of Scientific Papers B
          8405, Year-long, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Basic Laboratory Techniques in Physical Chemistry
          1206, Spring, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Introduction to Bioinformatics for Drug Discovery
          1114, Spring, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Introduction to Bioinformatics for Drug Discovery
          1114, Spring, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Research Proposal Writing Practice A
          8402, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2022, To 31 Mar. 2023
          Research Training(Computational Genomics)
          8161, Year-long, Faculty of Pharmaceutical Sciences, 6
        • From 01 Apr. 2022, To 31 Mar. 2023
          Medical Frontier Science Research A
          8406, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2022, To 31 Mar. 2023
          Research in Bioinformatics
          7004, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2022, To 31 Mar. 2023
          Seminar in Medicinal Frontier Sciences
          2316, Year-long, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Seminar on Critical Reading of Scientific Papers A
          8404, Year-long, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Advanced Methods in Bioinformatics
          5401, Year-long, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Research in Bioinformatics
          5201, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2022, To 31 Mar. 2023
          Research in Medicinal Frontier Sciences
          3215, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2022, To 31 Mar. 2023
          Introduction to Bioinformatics for Drug Discovery
          8104, Spring, Graduate School of Pharmaceutical Sciences, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Research Training(Computational Genomics)
          D161, Year-long, Faculty of Pharmaceutical Sciences, 10
        • From 01 Apr. 2022, To 31 Mar. 2023
          Pharmaceutical Laboratory Coaching Practice A
          8301, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2022, To 31 Mar. 2023
          Research in Bioinformatics
          7004, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2022, To 31 Mar. 2023
          Laboratory Practice in Medicinal Frontier Sciences
          4213, Year-long, Graduate School of Pharmaceutical Sciences, 1
        • From 01 Apr. 2022, To 31 Mar. 2023
          Skill Development for Chemoinformatics
          5002, Year-long, Graduate School of Pharmaceutical Sciences, 4
        • From 01 Apr. 2022, To 31 Mar. 2023
          Advanced Methods in Bioinformatics
          7006, Year-long, Graduate School of Pharmaceutical Sciences, 2
        • From Apr. 2011, To Mar. 2012
          特別実習(分子設計情報)
          Year-long, 薬学部
        • From Apr. 2011, To Mar. 2012
          Introduction to Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2011, To Mar. 2012
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2011, To Mar. 2012
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2011, To Mar. 2012
          Advanced Drug Discovery & Development II
          Spring, 薬学研究科
        • From Apr. 2011, To Mar. 2012
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2011, To Mar. 2012
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2011, To Mar. 2012
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2011, To Mar. 2012
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2012, To Mar. 2013
          Advanced Drug Discovery & Development II
          Spring, 薬学研究科
        • From Apr. 2012, To Mar. 2013
          doctoral program
          Spring, 薬学研究科
        • From Apr. 2012, To Mar. 2013
          doctoral program
          Fall, 薬学研究科
        • From Apr. 2012, To Mar. 2013
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2012, To Mar. 2013
          Introduction to Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2012, To Mar. 2013
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2012, To Mar. 2013
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2012, To Mar. 2013
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2013, To Mar. 2014
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2013, To Mar. 2014
          Introduction to Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2013, To Mar. 2014
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2013, To Mar. 2014
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2013, To Mar. 2014
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2013, To Mar. 2014
          Advanced Drug Discovery & Development II
          Spring, 薬学研究科
        • From Apr. 2013, To Mar. 2014
          doctoral program
          Spring, 薬学研究科
        • From Apr. 2013, To Mar. 2014
          doctoral program
          Fall, 薬学研究科
        • From Apr. 2014, To Mar. 2015
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2014, To Mar. 2015
          Introduction to Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2014, To Mar. 2015
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2014, To Mar. 2015
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2014, To Mar. 2015
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2014, To Mar. 2015
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2014, To Mar. 2015
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2015, To Mar. 2016
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2015, To Mar. 2016
          Introduction to Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2015, To Mar. 2016
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2015, To Mar. 2016
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2015, To Mar. 2016
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2015, To Mar. 2016
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2016, To Mar. 2017
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2016, To Mar. 2017
          Introduction to Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2016, To Mar. 2017
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2016, To Mar. 2017
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2016, To Mar. 2017
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2016, To Mar. 2017
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2016, To Mar. 2017
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2017, To Mar. 2018
          Introduction to Bioinformatics for Drug Discovery
          Spring, 薬学研究科
        • From Apr. 2017, To Mar. 2018
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2017, To Mar. 2018
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2017, To Mar. 2018
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2017, To Mar. 2018
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2018, To Mar. 2019
          Introduction to Bioinformatics for Drug Discovery
          Spring, 薬学研究科
        • From Apr. 2018, To Mar. 2019
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2018, To Mar. 2019
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2018, To Mar. 2019
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2018, To Mar. 2019
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2018, To Mar. 2019
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Introduction to Bioinformatics for Drug Discovery
          Spring, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2019, To Mar. 2020
          Advanced Methods in Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Advanced Methods in Bioinformatics
          Fall, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Research in Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Research in Bioinformatics
          Fall, 薬学研究科
        • From Apr. 2019, To Mar. 2020
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Introduction to Bioinformatics for Drug Discovery
          Spring, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2020, To Mar. 2021
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Advanced Methods in Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Advanced Methods in Bioinformatics
          Fall, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Research in Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2020, To Mar. 2021
          Research in Bioinformatics
          Fall, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Introduction to Bioinformatics for Drug Discovery
          Spring, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Skill Development for Chemoinformatics
          Year-long, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2021, To Mar. 2022
          Research Training(Computational Genomics)
          Year-long, 薬学部
        • From Apr. 2021, To Mar. 2022
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Advanced Methods in Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Advanced Methods in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Research in Bioinformatics
          Year-long, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Research in Bioinformatics
          Spring, 薬学研究科
        • From Apr. 2021, To Mar. 2022
          Research in Bioinformatics
          Year-long, 薬学研究科

        Participation in PhD Defense

        • Establishing advanced deep learning models for predicting drug side effects
          NGUYEN DUC ANH, Graduate School of Pharmaceutical Sciences, Chief Examiner
          23 Mar. 2023
        • シングルセルトランスクリプトーム解析を駆使したウイルス感染に対する動物種特異的自然免疫応答の同定
          ASO HIROFUMI, Graduate School of Pharmaceutical Sciences, Sub-chief Examiner
          23 Mar. 2023
        list
          Last Updated :2023/09/21

          Administration

          School management (title, position)

          • From 01 Apr. 2023, To 31 Mar. 2025
            バイオインフォマティクスセンター センター長
          • From 01 Apr. 2011, To 31 Mar. 2013
            化学研究所附属バイオインフォマティクスセンター長
          • From 01 Apr. 2019, To 31 Mar. 2021
            化学研究所附属バイオインフォマティクスセンター長

          Faculty management (title, position)

          • From 01 Apr. 2023, To 31 Mar. 2024
            化学研究所運営委員会
          • From 01 Apr. 2023, To 31 Mar. 2024
            化学研究所情報セキュリティ委員会
          • From 01 Apr. 2023, To 31 Mar. 2024
            化学研究所設備運営委員会
          • From 01 Apr. 2023, To 31 Mar. 2024
            化学研究所ゲノムネット推進室運営委員会
          • From 01 Apr. 2023, To 31 Mar. 2025
            環境・エネルギー専門委員会 委員
          • From 01 May 2022, To 30 Apr. 2024
            宇治構内保安・交通対策委員会委員
          • From 01 Apr. 2022, To 31 Mar. 2023
            化学研究所財務委員会 委員
          • From 01 Apr. 2022, To 31 Mar. 2023
            化学研究所情報セキュリティ委員会委員
          • From 01 Apr. 2022, To 31 Mar. 2024
            学術情報メディアセンター全国共同利用運営委員会委員
          • From 01 Apr. 2022, To 31 Mar. 2024
            情報環境整備委員会情報ネットワーク専門委員会委員
          • From 01 Oct. 2006, To 30 Sep. 2008
            計算機環境専門委員会 委員
          • From 01 Oct. 2008, To 30 Sep. 2010
            計算機環境専門委員会 委員
          • From 01 Apr. 2010, To 31 Mar. 2012
            学術情報メディアセンター全国共同利用運営委員会 委員
          • From 01 Oct. 2010, To 30 Sep. 2012
            計算機環境専門委員会 委員
          • From 01 Jul. 2011, To 30 Jun. 2013
            研究用計算機専門委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2015
            化学研究所ゲノムネット推進室運営委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所財務委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所産学連携委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所将来問題・研究活性化委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所設備運営委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所財務委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所将来問題・研究活性化委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所設備運営委員会 委員
          • From 01 Apr. 2015, To 31 Mar. 2017
            化学研究所ゲノムネット推進室運営委員会 委員
          • From 01 Apr. 2015, To 31 Mar. 2016
            化学研究所財務委員会 委員
          • From 01 Apr. 2015, To 31 Mar. 2016
            化学研究所産学連携委員会 委員
          • From 01 Apr. 2015, To 31 Mar. 2016
            化学研究所自己点検評価委員会 委員
          • From 01 Apr. 2016, To 31 Mar. 2017
            化学研究所産学連携委員会 委員
          • From 01 Apr. 2016, To 31 Mar. 2017
            化学研究所将来問題・研究活性化委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2019
            化学研究所ゲノムネット推進室運営委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2018
            化学研究所財務委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2018
            化学研究所設備運営委員会 委員
          • From 01 Apr. 2018, To 31 Mar. 2019
            化学研究所広報委員会 委員
          • From 01 Apr. 2018, To 31 Mar. 2019
            化学研究所財務委員会 委員
          • From 01 Apr. 2018, To 31 Mar. 2019
            化学研究所将来問題・研究活性化委員会 委員
          • From 01 Apr. 2019, To 31 Mar. 2022
            化学研究所ゲノムネット推進室運営委員会 委員
          • From 01 Apr. 2019, To 31 Mar. 2020
            化学研究所運営委員会 委員
          • From 01 Apr. 2019, To 31 Mar. 2020
            化学研究所広報委員会 委員
          • From 01 Apr. 2019, To 31 Mar. 2020
            化学研究所財務委員会 委員
          • From 01 Apr. 2020, To 31 Mar. 2021
            化学研究所運営委員会委員
          • From 01 Apr. 2020, To 31 Mar. 2021
            化学研究所自己点検評価委員会委員
          • From 01 Apr. 2020, To 31 Mar. 2021
            化学研究所情報セキュリティ委員会委員
          • From 01 Apr. 2020, To 31 Mar. 2022
            宇治事業所省エネルギー推進委員会
          • From 01 Apr. 2021, To 31 Mar. 2023
            環境・エネルギー専門委員会 委員
          • From 01 Apr. 2021, To 31 Mar. 2023
            情報環境機構KUINS利用負担金検討委員会 委員
          • From 01 Apr. 2021, To 31 Mar. 2022
            化学研究所将来問題・研究活性化委員会委員
          • From 01 Apr. 2021, To 31 Mar. 2022
            化学研究所広報委員会委員
          • From 01 Apr. 2021, To 31 Mar. 2022
            化学研究所情報セキュリティ委員会委員
          • From 01 Apr. 2021, To 31 Mar. 2023
            化学研究所ゲノムネット推進室運営委員会委員
          list
            Last Updated :2023/09/21

            Academic, Social Contribution

            Committee Memberships

            • From Oct. 2023, To Oct. 2023
              Senior Program Committee Member, 32nd ACM International Conference on Information and Knowledge Management (CIKM 2023)
            • From Sep. 2023, To Sep. 2023
              Program Committee Member, European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2023)
            • From Aug. 2023, To Aug. 2023
              Program Committee Member, 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023)
            • From Jul. 2023, To Jul. 2023
              Program Committee Member, Fortieth International Conference on Machine Learning (ICML 2023)
            • From Feb. 2013, To Present
              Bioinformatics and Bioengineering Technical Committee Member, Computational Intelligence Society, IEEE
            • From Oct. 2022, To Oct. 2022
              Senior Program Committee Member, 31st ACM International Conference on Information and Knowledge Management (CIKM 2022)
            • From Aug. 2022, To Aug. 2022
              Program Committee Member, 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2022)
            • From Apr. 2022, To Apr. 2022
              Program Committee Member, Tenth International Conference on Learning Representations (ICLR 2022)
            • From Feb. 2022, To Mar. 2022
              Program Committee Member, Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022)
            • From Nov. 2021, To Nov. 2021
              Program Committee Member, 30th ACM International Conference on Information and Knowledge Management (CIKM 2021)
            • From Aug. 2021, To Aug. 2021
              Program Committee Member, 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2021)
            • From May 2021, To May 2021
              Program Committee Member, Ninth International Conference on Learning Representations (ICLR 2021)
            • From Feb. 2021, To Feb. 2021
              Program Committee Member, Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2021)
            • From Jan. 2021, To Jan. 2021
              Program Committee Member, 29th International Joint Conference on Artificial Intelligence (IJCAI 2020)
            • From Dec. 2020, To Dec. 2020
              Program Committee Member, 2020 IEEE International Conference on Big Data (IEEE Big Data 2020)
            • From Nov. 2020, To Nov. 2020
              Program Committee Member, 20th IEEE International Conference on Data Mining (ICDM 2020)
            • From Oct. 2020, To Oct. 2020
              Program Committee Member, 29th ACM International Conference on Information and Knowledge Management (CIKM 2020)
            • From Aug. 2020, To Aug. 2020
              Program Committee Member, 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2020)
            • From Feb. 2020, To Feb. 2020
              Program Committee Member, 18th Asia Pacific Bioinformatics Conference (APBC 2020)
            • From Feb. 2020, To Feb. 2020
              Program Committee Member, 34th AAAI Conference on Artificial Intelligence (AAAI 2020)
            • From Dec. 2019, To Dec. 2019
              Program Committee Member, 2019 IEEE International Conference on Big Data (IEEE Big Data 2019)
            • From Nov. 2019, To Nov. 2019
              Program Committee Member, 28th ACM International Conference on Information and Knowledge Management (CIKM 2019)
            • From Nov. 2019, To Nov. 2019
              Program Committee Member, 19th IEEE International Conference on Data Mining (ICDM 2019)
            • From Sep. 2019, To Sep. 2019
              Program Committee Member, 18th International Conference on Bioinformatics (InCoB 2019)
            • From Aug. 2019, To Aug. 2019
              Program Committee Member, 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2019)
            • From Jun. 2019, To Jun. 2019
              Program Committee Member, Thirty-sixth International Conference on Machine Learning (ICML 2019)
            • From Jan. 2019, To Jan. 2019
              Program Committee Member, 17th Asia Pacific Bioinformatics Conference (APBC 2019)
            • From Dec. 2018, To Dec. 2018
              Senior Program Committee Member, 2018 IEEE International Conference on Big Data (IEEE Big Data 2018)
            • From Nov. 2018, To Nov. 2018
              Program Committee Member, 18th IEEE International Conference on Data Mining (ICDM 2018)
            • From Nov. 2018, To Nov. 2018
              Program Committee Member, 30th International Conference on Tools with Artificial Intelligence (ICTAI 2018)
            • From Oct. 2018, To Oct. 2018
              Program Committee Member, 27th ACM Conference on Information and Knowledge Management (CIKM 2018)
            • From Oct. 2018, To Oct. 2018
              Program Committee Member, 18th International Conference on Bioinformatics and Bioengineering (BIBE 2018)
            • From Sep. 2018, To Sep. 2018
              Program Committee Member, 17th International Conference on Bioinformatics (InCoB 2018)
            • From Aug. 2018, To Aug. 2018
              Program Committee Member, 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2018)
            • From Jun. 2018, To Jun. 2018
              Program Committee Member, Thirty-fifth International Conference on Machine Learning (ICML 2018)
            • From Jan. 2018, To Jan. 2018
              Program Committee Member, 16th Asia Pacific Bioinformatics Conference (APBC 2018)
            • From Nov. 2017, To Nov. 2017
              Program Committee Member, 26th ACM Conference on Information and Knowledge Management (CIKM 2017)
            • From Nov. 2017, To Nov. 2017
              Program Committee Member, 29th International Conference on Tools with Artificial Intelligence (ICTAI 2017)
            • From Oct. 2017, To Nov. 2017
              Program Committee Member, 28th International Conference on Genome Informatics (GIW 2017)
            • From Oct. 2017, To Oct. 2017
              Program Committee Member, 4th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2017)
            • From Sep. 2017, To Sep. 2017
              Program Committee Member, 16th International Conference on Bioinformatics (InCoB 2017)
            • From Aug. 2017, To Aug. 2017
              Program Committee Member, 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2017)
            • From Jul. 2017, To Jul. 2017
              Program Committee Member, 11th International Workshop on Machine Learning for Systems Biology (MLSB 2017)
            • From Apr. 2017, To Apr. 2017
              Program Committee Member, Track on Bioinformatics and Computational Systems Biology, 24th Symposium on Applied Computing (ACM-SAC BIO 2009)
            • From Jan. 2017, To Jan. 2017
              Program Committee Member, 15th Asia Pacific Bioinformatics Conference (APBC 2017)
            • From Nov. 2016, To Nov. 2016
              Program Committee Member, 28th International Conference on Tools with Artificial Intelligence (ICTAI 2016)
            • From Oct. 2016, To Nov. 2016
              Program Committee Member, 16th International Conference on Bioinformatics and Bioengineering (BIBE 2016)
            • From Oct. 2016, To Oct. 2016
              Program Committee Co-chair, 27th International Conference on Genome Informatics (GIW 2016)
            • From Sep. 2016, To Sep. 2016
              Program Committee Member, 10th International Workshop on Machine Learning for Systems Biology (MLSB 2016)
            • From Sep. 2016, To Sep. 2016
              Program Committee Member, 15th International Conference on Bioinformatics (InCoB 2016)
            • From Aug. 2016, To Aug. 2016
              Program Committee Member, 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2016)
            • From Apr. 2016, To Apr. 2016
              Program Committee Member, 20th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2016)
            • From Jan. 2016, To Jan. 2016
              Program Committee Member, 14th Asia Pacific Bioinformatics Conference (APBC 2016)
            • From Nov. 2015, To Nov. 2015
              Program Committee Member, Sixth Workshop on Biological Data Mining and its Applications in Healthcare, 14th IEEE International Conference on Data Mining (ICDM 2015)
            • From Sep. 2015, To Sep. 2015
              Program Committee Member, 26th International Conference on Genome Informatics and 14th International Conference on Bioinformatics (GIW/InCoB 2015)
            • From Aug. 2015, To Aug. 2015
              Program Committee Member, 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2015)
            • From May 2015, To May 2015
              Program Committee Member, 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2015)
            • From Dec. 2014, To Dec. 2014
              Program Committee Member, Fifth Workshop on Biological Data Mining and its Applications in Healthcare, 13th IEEE International Conference on Data Mining (ICDM 2014)
            • From Aug. 2014, To Aug. 2014
              Program Committee Member, 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2014)
            • From Jul. 2014, To Aug. 2014
              Program Committee Member, 13th International Conference on Bioinformatics (InCoB 2014)
            • From May 2014, To May 2014
              Program Committee Member, 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014)
            • From Apr. 2012, To Mar. 2014
              Board member, Japanese Society for Bioinformatics
            • From Sep. 2013, To Sep. 2013
              Program Committee Member, 12th International Conference on Bioinformatics (InCoB 2013)
            • From Aug. 2013, To Aug. 2013
              Program Committee Member, 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Conference (KDD 2013)
            • From Oct. 2012, To Oct. 2012
              Program Committee Member, 11th International Conference on Bioinformatics (InCoB 2012)
            • From Jan. 2012, To Jan. 2012
              Program Committee Member, 10th Asia Pacific Bioinformatics Conference (APBC 2012)
            • From Nov. 2011, To Dec. 2011
              Program Committee Member, 10th International Conference on Bioinformatics (InCoB 2011)
            • From Dec. 2011, To Dec. 2011
              Program Committee Member, 22nd International Conference on Genome Informatics (GIW 2011)
            • From Nov. 2011, To Nov. 2011
              Program Committee Member, Third Asian Conference on Machine Learning (ACML 2011)
            • From Oct. 2011, To Oct. 2011
              Program Committee Member, 20th ACM Conference on Information and Knowledge Management (CIKM 2011)
            • From Jun. 2011, To Jun. 2011
              Program Committee Member and Area Chair, 21st International Conference on Artificial Neural Networks (ICANN 2011)
            • From Jan. 2007, To Mar. 2011
              Board Member, Association of Asian Societies for Bioinformatics (AASBi)
            • From Mar. 2011, To Mar. 2011
              Program Committee Member, Track on Bioinformatics and Computational Systems Biology, 26th Symposium on Applied Computing (ACM-SAC BIO 2011)
            • From Jan. 2011, To Jan. 2011
              Program Committee Member, 9th Asia Pacific Bioinformatics Conference (APBC 2011)
            • From Nov. 2010, To Nov. 2010
              Program Committee Member, Second Asian Conference on Machine Learning (ACML 2010)
            • From Sep. 2010, To Oct. 2010
              Program Committee Member, 8th Conference on Computational Methods in Systems Biology (CMSB 2010)
            • From Oct. 2010, To Oct. 2010
              Program Committee Member, 19th ACM Conference on Information and Knowledge Management (CIKM 2010)
            • From Aug. 2010, To Aug. 2010
              Program Committee Member, International Conference on Bioinformatics and Computational Biology (ACM BCB 2010)
            • From Mar. 2010, To Mar. 2010
              Program Committee Member, Track on Bioinformatics and Computational Systems Biology, 25th Symposium on Applied Computing (ACM-SAC BIO 2010)
            • From Jan. 2010, To Jan. 2010
              Program Committee Member, 8th Asia Pacific Bioinformatics Conference (APBC 2010)
            • From Dec. 2009, To Dec. 2009
              Program Committee Member, 20th International Conference on Genome Informatics (GIW 2009)
            • From Nov. 2009, To Nov. 2009
              Program Committee Member, Workshop on Applications of Machine Learning in Bioinformatics, IEEE International Conference on Bioinformatics & Biomedicine (BIBM 2009)
            • From Nov. 2009, To Nov. 2009
              Program Committee Member, First Asian Conference on Machine Learning (ACML 2009)
            • From Jun. 2009, To Jul. 2009
              Program Committee Member, 17th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB 2009) & 8th European Conference on Computational Biology (ECCB 2009)
            • From Jun. 2009, To Jun. 2009
              Program Committee Co-chair, Ninth IEEE International Conference on Bioinformatics and Bioengineering (BIBE 2009)
            • From Jan. 2009, To Jan. 2009
              Program Committee Member, 7th Asia Pacific Bioinformatics Conference (APBC 2009)
            • From Dec. 2008, To Dec. 2008
              Program Committee Member, 19th International Conference on Genome Informatics (GIW 2008)
            • From Jul. 2008, To Jul. 2008
              Program Committee Member, 16th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB 2008)
            • From Apr. 2007, To Mar. 2008
              Secretary, Japanese Society for Bioinformatics
            • From Jan. 2008, To Jan. 2008
              Program Committee Member, 6th Asia Pacific Bioinformatics Conference (APBC 2008)
            • From Dec. 2007, To Dec. 2007
              Program Committee Chair, 18th International Conference on Genome Informatics (GIW 2007)
            • From Jul. 2007, To Jul. 2007
              Program Committee Member, 15th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB 2007) & 6th European Conference on Computational Biology (ECCB 2007)
            • From Apr. 2005, To Mar. 2007
              Board member, Japanese Society for Bioinformatics
            • From Apr. 2003, To Mar. 2007
              Secretary, Special Interest Group: Mathematical modeling and Problem Solving (MPS), Information Processing Society of Japan
            • From Dec. 2006, To Dec. 2006
              Program Committee Member, 17th International Conference on Genome Informatics (GIW 2006)
            • From Oct. 2006, To Oct. 2006
              Program Committee Member, Second Biotechnology and Bioinformatics Symposium (BIOT-06)
            • From Oct. 2005, To Apr. 2006
              Member and Chair, Committee on enacting "Bioinformatics Education Curriculum", Japanese Society for Bioinformatics
            • From Dec. 2005, To Dec. 2005
              Program Committee Co-chair, 16th International Conference on Genome Informatics (GIW 2005)
            • From Aug. 2005, To Aug. 2005
              Program Committee Member, Second Biotechnology and Bioinformatics Symposium (BIOT-05)
            • From Dec. 2004, To Dec. 2004
              Program Committee Member, 15th International Conference on Genome Informatics (GIW 2004)

            Academic Contribution

            • Grant referee
              Supervision (editorial), Peer review
              Inserm (National Institute of Health and Medical Research), France, From Mar. 2023, To Apr. 2023
            • Grant referee
              Supervision (editorial), Peer review
              European Science Foundation, Europe, From Aug. 2022, To Aug. 2022
            • Grant referee
              Supervision (editorial), Peer review
              National Science Centre, Poland, From Mar. 2021, To Mar. 2021
            • Grant referee
              Supervision (editorial), Peer review
              Austrian Science Fund (FWF), Austria, From Dec. 2020, To Jan. 2021
            • Grant referee, NRF (National Research Foundation)-NSFC (National Science Foundation of China) Joint Grant Call in Data Science
              Supervision (editorial), Peer review
              NRF (National Research Foundation), Singapore, From Aug. 2016, To Sep. 2016
            • Grant referee, Strategic Research Funding
              Supervision (editorial), Peer review
              City University of Hong Kong, Hong Kong SAR, From Jan. 2012, To Jan. 2012
            • Grant referee, Strategic Research Funding
              Supervision (editorial), Peer review
              City University of Hong Kong, Hong Kong SAR, From Feb. 2008, To Feb. 2008
            • Grant referee, Extramural Programme
              Supervision (editorial), Peer review
              Biomedical Research Council (BMRC), A*STAR, Singapore, From Sep. 2007, To Sep. 2007
            • Editorial Board Member (Series Editor), Advanced Information and Knowledge Processing
              Supervision (editorial)
              Springer Nature, From Oct. 2013, To Present
            • Associate Editor, IEEE Transactions on Neural Network and Learning Systems
              Supervision (editorial)
              IEEE Computational Intelligence Society, From Jan. 2020, To Present
            • Associate Editor, BMC Bioinformatics
              Supervision (editorial)
              Springer Nature, From Apr. 2010, To Present
            • Associate Editor, Knowledge and Information Systems
              Supervision (editorial)
              Springer Nature, From Nov. 2009, To Jul. 2022
            • Regional Editor, Network and Systems Medicine
              Supervision (editorial)
              Mary Ann Liebert, From Oct. 2017, To Apr. 2021
            • Associate Editor, International Journal of Knowledge Discovery in Bioinformatics
              Supervision (editorial)
              IGI Global, From Dec. 2008, To Dec. 2018
            • Guest co-editor, Asia Pacific Biotech News
              Supervision (editorial)
              From 2007, To 2007
            • Guest co-editor, Artificial Intelligence in Medicine
              Supervision (editorial)
              From 2005, To 2005
            • Member, Editorial Committee, Journal of Information Processing
              Supervision (editorial)
              Information Processing Society of Japan, From Apr. 2001, To Mar. 2002

            ページ上部へ戻る