Researchers Information System

日本語に切り替えるswitch to english

Akutsu, Tatsuya

Institute for Chemical Research (ICR) Professor

Akutsu, Tatsuya
list
    Last Updated :2022/05/14

    Basic Information

    Affiliated programs (koza)

    • Graduate School of Informatics, 知能情報学専攻 生命システム情報学, 教授

    Academic Degree

    • 工学博士(東京大学)

    Academic Resume (Graduate Schools)

    • 東京大学, 大学院工学系研究科情報工学専攻博士課程, 修了
    • 東京大学, 大学院工学系研究科航空学専攻修士課程, 修了

    Academic Resume (Undergraduate School/Majors)

    • 東京大学, 工学部航空学科, 卒業

    High School

    • High School

      栃木県立宇都宮高等学校

    Research History

    • From Oct. 2001, To Present
      Kyoto University, Institute for Chemical Research Bioinformatics Center, 教授
    • From Apr. 1996, To Sep. 2001
      The University of Tokyo, The Institute of Medical Science Human Genome Center, 助教授
    • From Apr. 1994, To Mar. 1996
      Gunma University, 工学部 情報工学科, 助教授
    • From Apr. 1989, To Mar. 1994
      通商産業省工業技術院機械技術研究所, 研究員

    Profile

    • Profile

      [略歴]

      1989年3月 東京大学大学院工学系研究科情報工学専攻博士課程修了(工学博士)

      1989年4月~1994年3月 通商産業省工業技術院機械技術研究所研究員

      1994年4月~1996年3月 群馬大学工学部情報工学科助教授

      1996年4月~2001年9月 東京大学医科学研究所ヒトゲノム解析センター助教授

      2001年2月~2001年8月 カリフォルニア大学バークレー校客員研究員

      2001年11月~2003年3月 京都大学大学院情報学研究科知能情報学専攻併任教授

      2001年10月~ 京都大学化学研究所バイオインフォマティクスセンター教授

      [研究分野]

      バイオインフォマティクス

      離散アルゴリズム

      複雑ネットワーク

    Language of Instruction

    • English

    ID,URL

    Website(s) (URL(s))

    researchmap URL

    list
      Last Updated :2022/05/14

      Research

      Research Topics, Overview of the research

      • Research Topics

        Bioinformatics, Complex Networks, Discrete Algorithms
      • Overview of the research

        We study mathematical models and algorithms for analyzing biological sequences, structures, networks, and systems.

      Research Areas

      • Informatics, Intelligent informatics, Complex Networks
      • Informatics, Information theory, Discrete Algorithms
      • Informatics, Biological, health, and medical informatics, Bioinformatics

      Papers

      • Probabilistic Critical Controllability Analysis of Protein Interaction Networks Integrating Normal Brain Ageing Gene Expression Profiles.
        Eimi Yamaguchi; Tatsuya Akutsu; Jose C Nacher
        International journal of molecular sciences, 13 Sep. 2021, Peer-reviewed
      • On the Compressive Power of Boolean Threshold Autoencoders.
        Avraham A Melkman; Sini Guo; Wai-Ki Ching; Pengyu Liu; Tatsuya Akutsu
        IEEE transactions on neural networks and learning systems, 24 Aug. 2021, Peer-reviewed, Last author, Corresponding author
      • An Inverse QSAR Method Based on Decision Tree and Integer Programming.
        Kouki Tanaka; Jianshen Zhu; Naveed Ahmed Azam; Kazuya Haraguchi; Liang Zhao 0013; Hiroshi Nagamochi; Tatsuya Akutsu
        Proc. 17th International Conference on Intelligent Computing Theories and Application, Aug. 2021, Peer-reviewed
      • Codependency and mutual exclusivity for gene community detection from sparse single-cell transcriptome data.
        Natsu Nakajima; Tomoatsu Hayashi; Katsunori Fujiki; Katsuhiko Shirahige; Tetsu Akiyama; Tatsuya Akutsu; Ryuichiro Nakato
        Nucleic acids research, 22 Jul. 2021, Peer-reviewed
      • An Improved Integer Programming Formulation for Inferring Chemical Compounds with Prescribed Topological Structures.
        Jianshen Zhu; Naveed Ahmed Azam; Kazuya Haraguchi; Liang Zhao 0013; Hiroshi Nagamochi; Tatsuya Akutsu
        Proc. 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Jul. 2021, Peer-reviewed
      • iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization.
        Zhen Chen; Pei Zhao; Chen Li; Fuyi Li; Dongxu Xiang; Yong-Zi Chen; Tatsuya Akutsu; Roger J Daly; Geoffrey I Webb; Quanzhi Zhao; Lukasz Kurgan; Jiangning Song
        Nucleic acids research, 04 Jun. 2021, Peer-reviewed
      • Uncovering and classifying the role of driven nodes in control of complex networks.
        Yuma Shinzawa; Tatsuya Akutsu; Jose C Nacher
        Scientific reports, 05 May 2021, Peer-reviewed, Corresponding author
      • Inhibitory neurons exhibit high controlling ability in the cortical microconnectome.
        Motoki Kajiwara; Ritsuki Nomura; Felix Goetze; Masanori Kawabata; Yoshikazu Isomura; Tatsuya Akutsu; Masanori Shimono
        PLoS computational biology, Apr. 2021, Peer-reviewed
      • An Inverse QSAR Method Based on a Two-Layered Model and Integer Programming.
        Yu Shi; Jianshen Zhu; Naveed Ahmed Azam; Kazuya Haraguchi; Liang Zhao; Hiroshi Nagamochi; Tatsuya Akutsu
        International journal of molecular sciences, 11 Mar. 2021, Peer-reviewed
      • On the Distribution of Successor States in Boolean Threshold Networks.
        Sini Guo; Pengyu Liu; Wai-Ki Ching; Tatsuya Akutsu
        IEEE transactions on neural networks and learning systems, 15 Feb. 2021, Peer-reviewed, Last author, Corresponding author
      • Databases for Protein-Protein Interactions.
        Natsu Nakajima; Tatsuya Akutsu; Ryuichiro Nakato
        Methods in molecular biology (Clifton, N.J.), 2021, Peer-reviewed, Invited
      • A Novel Method for Inferring Chemical Compounds with Prescribed Topological Substructures Based on Integer Programming
        Jianshen Zhu; Naveed Ahmed Azam; Fan Zhang; Aleksandar Shurbevski; Kazuya Haraguchi; Liang Zhao; Hiroshi Nagamochi; Tatsuya Akutsu
        IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, Peer-reviewed, Last author, Corresponding author
      • Anthem: a user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules.
        Shutao Mei; Fuyi Li; Dongxu Xiang; Rochelle Ayala; Pouya Faridi; Geoffrey I Webb; Patricia T. Illing; Jamie Rossjohn; Tatsuya Akutsu; Nathan P. Croft; Anthony W. Purcell; Jiangning Song
        Briefings Bioinform., 2021, Peer-reviewed
      • New and improved algorithms for unordered tree inclusion.
        Tatsuya Akutsu; Jesper Jansson; Ruiming Li; Atsuhiro Takasu; Takeyuki Tamura
        Theor. Comput. Sci., 2021, Peer-reviewed, Lead author, Corresponding author
      • DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.
        Ruopeng Xie; Jiahui Li; Jiawei Wang; Wei Dai; André Leier; Tatiana T. Marquez-Lago; Tatsuya Akutsu; Trevor Lithgow; Jiangning Song; Yanju Zhang
        Briefings Bioinform., 2021, Peer-reviewed
      • Discrimination of attractors with noisy nodes in Boolean networks.
        Xiaoqing Cheng; Wai-Ki Ching; Sini Guo; Tatsuya Akutsu
        Autom., 2021, Peer-reviewed, Last author, Corresponding author
      • A novel method for inference of acyclic chemical compounds with bounded branch-height based on artificial neural networks and integer programming.
        Naveed Ahmed Azam; Jianshen Zhu; Yanming Sun; Yu Shi; Aleksandar Shurbevski; Liang Zhao 0013; Hiroshi Nagamochi; Tatsuya Akutsu
        Algorithms Mol. Biol., 2021, Peer-reviewed, Last author, Corresponding author
      • Weighted minimum feedback vertex sets and implementation in human cancer genes detection.
        Ruiming Li; Chun-Yu Lin; Weifeng Guo; Tatsuya Akutsu
        BMC Bioinform., 2021, Peer-reviewed, Last author, Corresponding author
      • ReCGBM: a gradient boosting-based method for predicting human dicer cleavage sites.
        Pengyu Liu; Jiangning Song; Chun-Yu Lin; Tatsuya Akutsu
        BMC Bioinform., 2021, Peer-reviewed, Last author, Corresponding author
      • A New Integer Linear Programming Formulation to the Inverse QSAR/QSPR for Acyclic Chemical Compounds Using Skeleton Trees.
        Fan Zhang; Jianshen Zhu; Rachaya Chiewvanichakorn; Aleksandar Shurbevski; Hiroshi Nagamochi; Tatsuya Akutsu
        Proc. 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2020), Sep. 2020, Peer-reviewed, Last author
      • Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
        Zhen Chen 0009; Pei Zhao; Fuyi Li; Yanan Wang; Alexander Ian Smith; Geoffrey I. Webb; Tatsuya Akutsu; Abdelkader Baggag; Halima Bensmail; Jiangning Song
        Briefings Bioinform., Sep. 2020, Peer-reviewed
      • Network control principles for identifying personalized driver genes in cancer.
        Weifeng Guo; Shaowu Zhang 0001; Tao Zeng; Tatsuya Akutsu; Luonan Chen
        Briefings Bioinform., Sep. 2020, Peer-reviewed
      • Comparison of pseudoknotted RNA secondary structures by topological centroid identification and tree edit distance
        Wang F; Akutsu T; Mori T
        Journal of Computational Biology, Sep. 2020, Peer-reviewed
      • A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction.
        Shutao Mei; Fuyi Li; André Leier; Tatiana T. Marquez-Lago; Kailin Giam; Nathan P. Croft; Tatsuya Akutsu; Alexander Ian Smith; Jian Li; Jamie Rossjohn; Anthony W. Purcell; Jiangning Song
        Briefings Bioinform., Jul. 2020, Peer-reviewed
      • Extracting boolean and probabilistic rules from trained neural networks.
        Pengyu Liu; Avraham A. Melkman; Tatsuya Akutsu
        Neural Networks, Jun. 2020, Peer-reviewed, Last author, Corresponding author
      • iLearn : an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data.
        Zhen Chen 0009; Pei Zhao; Fuyi Li; Tatiana T. Marquez-Lago; André Leier; Jerico Nico De Leon Revote; Yan Zhu; David R. Powell; Tatsuya Akutsu; Geoffrey I. Webb; Kuo-Chen Chou; Alexander Ian Smith; Roger J. Daly; Jian Li 0052; Jiangning Song
        Briefings Bioinform., May 2020, Peer-reviewed
      • Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
        Fuyi Li; André Leier; Quanzhong Liu; Yanan Wang; Dongxu Xiang; Tatsuya Akutsu; Geoffrey I. Webb; Alexander Ian Smith; Tatiana T. Marquez-Lago; Jian Li 0052; Jiangning Song
        Genom. Proteom. Bioinform., Feb. 2020, Peer-reviewed
      • A Novel Method for the Inverse QSAR/QSPR based on Artificial Neural Networks and Mixed Integer Linear Programming with Guaranteed Admissibility
        Naveed Azam; Rachaya Chiewvanichakorn; Fan Zhang; Aleksandar Shurbevski; Hiroshi Nagamochi; Tatsuya Akutsu
        Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, Feb. 2020, Peer-reviewed, Last author
      • DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.
        Fuyi Li; Jinxiang Chen; André Leier; Tatiana T. Marquez-Lago; Quanzhong Liu; Yanze Wang; Jerico Nico De Leon Revote; Alexander Ian Smith; Tatsuya Akutsu; Geoffrey I. Webb; Lukasz A. Kurgan; Jiangning Song
        Bioinform., Feb. 2020, Peer-reviewed
      • PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
        Yanju Zhang; Sha Yu; Ruopeng Xie; Jiahui Li; André Leier; Tatiana T. Marquez-Lago; Tatsuya Akutsu; Alexander Ian Smith; Zongyuan Ge; Jiawei Wang; Trevor Lithgow; Jiangning Song
        Bioinform., Feb. 2020, Peer-reviewed
      • A Method for the Inverse QSAR/QSPR Based on Artificial Neural Networks and Mixed Integer Linear Programming
        Rachaya Chiewvanichakorn; Chenxi Wang; Zhe Zhang; Aleksandar Shurbevski; Hiroshi Nagamochi; Tatsuya Akutsu
        Proceedings of the 2020 10th International Conference on Bioscience, Biochemistry and Bioinformatics, 19 Jan. 2020, Peer-reviewed, Last author
      • An Overview of Bioinformatics Methods for Analyzing Autism Spectrum Disorders.
        Shogo Nakashima; Jose C Nacher; Jiangning Song; Tatsuya Akutsu
        Current pharmaceutical design, 2020, Peer-reviewed, Last author, Corresponding author
      • Improved Hardness of Maximum Common Subgraph Problems on Labeled Graphs of Bounded Treewidth and Bounded Degree.
        Tatsuya Akutsu; Avraham A. Melkman; Takeyuki Tamura
        Int. J. Found. Comput. Sci., 2020, Peer-reviewed
      • A Novel Method for Inference of Chemical Compounds of Cycle Index Two with Desired Properties Based on Artificial Neural Networks and Integer Programming.
        Jianshen Zhu; Chenxi Wang; Aleksandar Shurbevski; Hiroshi Nagamochi; Tatsuya Akutsu
        Algorithms, 2020, Peer-reviewed
      • Circulating Exosomal miRNA Profiles Predict the Occurrence and Recurrence of Hepatocellular Carcinoma in Patients with Direct-Acting Antiviral-Induced Sustained Viral Response.
        Saori Itami-Matsumoto; Michiyo Hayakawa; Sawako Uchida-Kobayashi; Masaru Enomoto; Akihiro Tamori; Kazuyuki Mizuno; Hidenori Toyoda; Takeyuki Tamura; Tatsuya Akutsu; Takahiro Ochiya; Norifumi Kawada; Yoshiki Murakami
        Biomedicines, 03 Nov. 2019, Peer-reviewed
      • Identification of the Structure of a Probabilistic Boolean Network From Samples Including Frequencies of Outcomes.
        Akutsu T; Melkman AA
        IEEE transactions on neural networks and learning systems, Aug. 2019, Peer-reviewed
      • Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles.
        Matsubara T; Ochiai T; Hayashida M; Akutsu T; Nacher JC
        Journal of bioinformatics and computational biology, Jun. 2019, Peer-reviewed
      • Deep learning with evolutionary and genomic profiles for identifying cancer subtypes.
        Lin CY; Ruan P; Li R; Yang JM; See S; Song J; Akutsu T
        Journal of bioinformatics and computational biology, Jun. 2019, Peer-reviewed
      • Probabilistic controllability approach to metabolic fluxes in normal and cancer tissues.
        Schwartz JM; Otokuni H; Akutsu T; Nacher JC
        Nature communications, Jun. 2019, Peer-reviewed
      • On the number of driver nodes for controlling a Boolean network when the targets are restricted to attractors.
        Hou W; Ruan P; Ching WK; Akutsu T
        Journal of theoretical biology, Feb. 2019, Peer-reviewed
      • Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems.
        Ravindran V; Nacher JC; Akutsu T; Ishitsuka M; Osadcenco A; Sunitha V; Bagler G; Schwartz JM; Robertson DL
        Scientific reports, Feb. 2019, Peer-reviewed
      • Optimal string clustering based on a Laplace-like mixture and EM algorithm on a set of strings.
        Array,Morihiro Hayashida; Tatsuya Akutsu
        J. Comput. Syst. Sci., 2019, Peer-reviewed
      • Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches.
        Jiawei Wang; Bingjiao Yang; Yi An; Tatiana T. Marquez-Lago; André Leier; Jonathan Wilksch; Qingyang Hong; Yang Zhang 0010; Morihiro Hayashida; Tatsuya Akutsu; Geoffrey I. Webb; Richard A. Strugnell; Jiangning Song; Trevor Lithgow
        Briefings Bioinform., 2019, Peer-reviewed
      • iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.
        Jiangning Song; Yanan Wang; Fuyi Li; Tatsuya Akutsu; Neil D. Rawlings; Geoffrey I. Webb; Kuo-Chen Chou
        Briefings Bioinform., 2019, Peer-reviewed
      • Bastion3: a two-layer ensemble predictor of type III secreted effectors.
        Jiawei Wang; Jiahui Li; Bingjiao Yang; Ruopeng Xie; Tatiana T. Marquez-Lago; André Leier; Morihiro Hayashida; Tatsuya Akutsu; Yanju Zhang; Kuo-Chen Chou; Joel Selkrig; Tieli Zhou; Jiangning Song; Trevor Lithgow
        Bioinform., 2019, Peer-reviewed
      • Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network.
        Jingwen Zeng; Hongmin Cai; Hong Peng; Haiyan Wang; Yue Zhang; Tatsuya Akutsu
        Frontiers in genetics, 2019, Peer-reviewed
      • Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
        Zhen Chen; Xuhan Liu; Fuyi Li; Chen Li 0021; Tatiana T. Marquez-Lago; André Leier; Tatsuya Akutsu; Geoffrey I. Webb; Dakang Xu; Alexander Ian Smith; Lei Li 0013; Kuo-Chen Chou; Jiangning Song
        Briefings Bioinform., 2019, Peer-reviewed
      • Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
        Yanju Zhang; Ruopeng Xie; Jiawei Wang; André Leier; Tatiana T. Marquez-Lago; Tatsuya Akutsu; Geoffrey I. Webb; Kuo-Chen Chou; Jiangning Song
        Briefings Bioinform., 2019, Peer-reviewed
      • Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.
        Fuyi Li; Yanan Wang; Chen Li 0021; Tatiana T. Marquez-Lago; André Leier; Neil D. Rawlings; Gholamreza Haffari; Jerico Nico De Leon Revote; Tatsuya Akutsu; Kuo-Chen Chou; Anthony W. Purcell; Robert N. Pike; Geoffrey I. Webb; Alexander Ian Smith; Trevor Lithgow; Roger J. Daly; James C. Whisstock; Jiangning Song
        Briefings Bioinform., 2019, Peer-reviewed
      • Toward more accurate prediction of caspase cleavage sites: a comprehensive review of current methods, tools and features.
        Yu Bao; Simone Marini; Takeyuki Tamura; Mayumi Kamada; Shingo Maegawa; Hiroshi Hosokawa; Jiangning Song; Tatsuya Akutsu
        Briefings Bioinform., 2019, Peer-reviewed
      • Resource Cut, a New Bounding Procedure to Algorithms for Enumerating Tree-Like Chemical Graphs.
        Nishiyama Y; Shurbevski A; Nagamochi H; Akutsu T
        IEEE/ACM transactions on computational biology and bioinformatics, Jan. 2019, Peer-reviewed
      • Protease target prediction via matrix factorization.
        Simone Marini; Francesca Vitali; Sara Rampazzi; Andrea Demartini; Tatsuya Akutsu
        Bioinform., 2019, Peer-reviewed
      • Controllability Methods for Identifying Associations Between Critical Control ncRNAs and Human Diseases.
        Nacher JC; Akutsu T
        Methods in molecular biology (Clifton, N.J.), 2019, Peer-reviewed
      • Finding and analysing the minimum set of driver nodes required to control multilayer networks.
        Nacher JC; Ishitsuka M; Miyazaki S; Akutsu T
        Scientific reports, Jan. 2019, Peer-reviewed
      • Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome.
        Li F; Li C; Marquez-Lago TT; Leier A; Akutsu T; Purcell AW; Ian Smith A; Lithgow T; Daly RJ; Song J; Chou KC
        Bioinformatics (Oxford, England), Dec. 2018, Peer-reviewed
      • Computing Minimum Reaction Modifications in a Boolean Metabolic Network.
        Tamura T; Lu W; Song J; Akutsu T
        IEEE/ACM transactions on computational biology and bioinformatics, Nov. 2018, Peer-reviewed
      • A simple linear-time algorithm for computing the centroid and canonical form of a plane graph and its applications
        Tatsuya Akutsu; Colin De La Higuera; Takeyuki Tamura
        Leibniz International Proceedings in Informatics, LIPIcs, 01 May 2018, Peer-reviewed
      • Enumerating chemical mono-block 3-augmented trees with two junctions
        Yuui Tamura; Hiroshi Nagamochi; Aleksandar Shurbevski; Tatsuya Akutsu
        ACM International Conference Proceeding Series, 18 Jan. 2018, Peer-reviewed
      • New and Improved Algorithms for Unordered Tree Inclusion.
        Tatsuya Akutsu; Jesper Jansson,Ruiming Li; Atsuhiro Takasu; Takeyuki Tamura
        29th International Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, 2018, Peer-reviewed
      • New Algorithms for Unordered Tree Inclusion.
        Tatsuya Akutsu; Jesper Jansson; Ruiming Li; Atsuhiro Takasu; Takeyuki Tamura
        CoRR, 2017
      • On Observability of Attractors in Boolean Networks
        Yushan Qiu; Xiaoqing Cheng; Wai-Ki Ching; Hao Jiang; Tatsuya Akutsu
        PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, Peer-reviewed
      • Analysis of critical and redundant nodes in controlling directed and undirected complex networks using dominating sets
        Jose C. Nacher; Tatsuya Akutsu
        Journal of Complex Networks, 2014, Peer-reviewed
      • Network completion for static gene expression data
        Natsu Nakajima; Tatsuya Akutsu
        Advances in Bioinformatics, 2014, Peer-reviewed
      • A polynomial-time algorithm for computing the maximum common connected edge subgraph of outerplanar graphs of bounded Degree
        Tatsuya Akutsu; Takeyuki Tamura
        Algorithms, 2013, Peer-reviewed
      • On the complexity of finding a largest common subtree of bounded degree
        Tatsuya Akutsu; Takeyuki Tamura; Avraham A. Melkman; Atsuhiro Takasu
        Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, Peer-reviewed
      • On the degree distribution of projected networks mapped from bipartite networks
        J. C. Nacher; T. Akutsu
        Physica A: Statistical Mechanics and its Applications, 01 Nov. 2011, Peer-reviewed
      • The role of internal duplication in the evolution of multi-domain proteins
        J. C. Nacher; M. Hayashida; T. Akutsu
        BIOSYSTEMS, Aug. 2010, Peer-reviewed
      • Prediction of protein folding rates from structural topology and complex network properties
        Jiangning Song; Kazuhiro Takemoto; Hongbin Shen; Hao Tan; M. Michael Gromiha; Tatsuya Akutsu
        IPSJ Transactions on Bioinformatics, 2010, Peer-reviewed
      • Finding minimum reaction cuts of metabolic networks under a Boolean model using integer programming and feedback vertex sets
        Tamura T; Takemoto K; Akutsu, T
        International Journal of Knowledge Discovery in Bioinformatics, Jan. 2010, Peer-reviewed
      • A mathematical model for generating bipartite graphs and its application to protein networks
        J. C. Nacher; T. Ochiai; M. Hayashida; T. Akutsu
        JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, Dec. 2009, Peer-reviewed
      • Distribution and enumeration of attractors in probabilistic Boolean networks
        M. Hayashida; T. Tamura; T. Akutsu; W. -K. Ching; Y. Cong
        IET SYSTEMS BIOLOGY, Nov. 2009, Peer-reviewed
      • Algorithms for singleton attractor detection in planar and nonplanar AND/OR Boolean networks
        Takeyuki Tamura; Tatsuya Akutsu
        Mathematics in Computer Science, Mar. 2009, Peer-reviewed
      • Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs
        J. C. Nacher; M. Hayashida; T. Akutsu
        BIOSYSTEMS, Feb. 2009, Peer-reviewed
      • Detecting a Singleton Attractor in a Boolean Network Utilizing SAT Algorithms
        Takeyuki Tamura; Tatsuya Akutsu
        IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, Feb. 2009, Peer-reviewed
      • Domain-based prediction and analysis of protein-protein interactions
        Tatsuya Akutsu; Morihiro Hayashida
        Biological Data Mining in Protein Interaction Networks, 2009, Peer-reviewed
      • Integer programming-based methods for attractor detection and control of boolean networks
        Tatsuya Akutsu; Morihiro Hayashida; Takeyuki Tamura
        Proceedings of the IEEE Conference on Decision and Control, 2009, Peer-reviewed
      • A Clustering Method for Analysis of Sequence Similarity Networks of Proteins Using Maximal Components of Graphs
        HAYASHIDA Morihiro; AKUTSU Tatsuya; NAGAMOCHI Hiroshi
        情報処理学会論文誌, 15 Mar. 2008, Peer-reviewed
      • Integer programming-based approach to allocation of reporter genes for cell array analysis.
        Morihiro Hayashida; Fuyan Sun; Sachiyo Aburatani; Katsuhisa Horimoto; Tatsuya Akutsu
        International journal of bioinformatics research and applications, 2008
      • Integer programming-based approach to allocation of reporter genes for cell array analysis.
        Morihiro Hayashida; Fuyan Sun; Sachiyo Aburatani; Katsuhisa Horimoto; Tatsuya Akutsu
        Int. J. Bioinform. Res. Appl., 2008
      • Algorithms and complexity analyses for control of singleton attractors in Boolean networks
        Takeyuki Tamura; Morihiro Hayashida; Tatsuya Akutsu; Shu-Qin Zhang; Wai-Ki Ching
        Eurasip Journal on Bioinformatics and Systems Biology, 2008, Peer-reviewed
      • Emergence of the self-similar property in gene expression dynamics
        T. Ochiai; J. C. Nacher; T. Akutsu
        Physica A: Statistical Mechanics and its Applications, 15 Aug. 2007, Peer-reviewed
      • Algorithms for finding small attractors in boolean networks
        Shu-Qin Zhang; Morihiro Hayashida; Tatsuya Akutsu; Wai-Ki Ching; Michael K. Ng
        Eurasip Journal on Bioinformatics and Systems Biology, 2007, Peer-reviewed
      • Sensitivity of the power-law exponent in gene expression distribution to mRNA decay rate
        J. C. Nacher; T. Akutsu
        Physics Letters, Section A: General, Atomic and Solid State Physics, 18 Dec. 2006, Peer-reviewed
      • Protein domain networks: Scale-free mixing of positive and negative exponents
        JC Nacher; M Hayashida; T Akutsu
        PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, Jul. 2006, Peer-reviewed
      • Selecting informative genes for cancer classification using gene expression data
        Tatsuya Akutsu; Satoru Miyano
        Computational and Statistical Approaches to Genomics, 2006, Peer-reviewed
      • Protein threading with profiles and distance constraints using clique based algorithms
        Bahadur K.C. Dukka; Etsuji Tomita; Jun'ichi Suzuki; Katsuhisa Horimoto; Tatsuya Akutsu
        Journal of Bioinformatics and Computational Biology, 2006, Peer-reviewed
      • The role of log-normal dynamics in the evolution of biochemical pathways
        J. C. Nacher; T. Ochiai; T. Yamada; M. Kanehisa; T. Akutsu
        BioSystems, Jan. 2006, Peer-reviewed
      • 原核生物の代謝ネットワークにおける 構造の乱雑さと生育温度の関係
        竹本和広; ホセ・C・ナチェル; 阿久津達也
        日本ソフトウェア科学会研究会資料, 2006, Peer-reviewed
      • A novel representation of protein sequences for prediction of subcellular location using support vector machines
        Setsuro Matsuda; Jean-Philippe Vert; Hiroto Saigo; Nobuhisa Ueda; Hiroyuki Toh; Tatsuya Akutsu
        Protein Science, Nov. 2005, Peer-reviewed
      • On the relation between fluctuation and scaling-law in gene expression time series from yeast to human
        J. C. Nacher; T. Ochiai; T. Akutsu
        Modern Physics Letters B, 20 Oct. 2005, Peer-reviewed
      • On construction of stochastic genetic networks based on gene expression sequences
        Wai-Ki Ching; Michael M. Ng; Eric S. Fung; Tatsuya Akutsu
        International Journal of Neural Systems, Aug. 2005, Peer-reviewed
      • A probabilistic model for mining labeled ordered trees: Capturing patterns in carbohydrate sugar chains
        Nobuhisa Ueda; Kiyoko F. Aoki-Kinoshita; Atsuko Yamaguchi; Tatsuya Akutsu; Hiroshi Mamitsuka
        IEEE Transactions on Knowledge and Data Engineering, Aug. 2005, Peer-reviewed
      • Graph kernels for molecular structure-activity relationship analysis with support vector machines
        Pierre Mahé; Nobuhisa Ueda; Tatsuya Akutsu; Jean-Luc Perret; Jean-Philippe Vert
        Journal of Chemical Information and Modeling, Jul. 2005, Peer-reviewed
      • A stochastic approach to multi-gene expression dynamics
        T. Ochiai; J. C. Nacher; T. Akutsu
        Physics Letters, Section A: General, Atomic and Solid State Physics, 16 May 2005, Peer-reviewed
      • Fast and accurate database homology search using upper bounds of local alignment scores
        Masumi Itoh; Susumu Goto; Tatsuya Akutsu; Minoru Kanehisa
        Bioinformatics, 01 Apr. 2005, Peer-reviewed
      • Two complementary representations of a scale-free network
        J. C. Nacher; T. Yamada; S. Goto; M. Kanehisa; T. Akutsu
        Physica A: Statistical Mechanics and its Applications, 01 Apr. 2005, Peer-reviewed
      • A score matrix to reveal the hidden links in glycans
        KF Aoki; H Mamitsuka; T Akutsu; M Kanehisa
        BIOINFORMATICS, Apr. 2005, Peer-reviewed
      • Flexible construction of hierarchical scale-free networks with general exponent
        J. C. Nacher; N. Ueda; M. Kanehisa; T. Akutsu
        Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, Mar. 2005, Peer-reviewed
      • Performance analysis of a greedy algorithm for inferring Boolean functions
        D Fukagawa; T Akutsu
        INFORMATION PROCESSING LETTERS, Jan. 2005, Peer-reviewed
      • Clustering under the line graph transformation: Application to reaction network
        Jose C. Nacher; Nobuhisa Ueda; Takuji Yamada; Minoru Kanehisa; Tatsuya Akutsu
        BMC Bioinformatics, 24 Dec. 2004, Peer-reviewed
      • A constructive approach to gene expression dynamics
        T. Ochiai; J. C. Nacher; T. Akutsu
        Physics Letters, Section A: General, Atomic and Solid State Physics, 27 Sep. 2004, Peer-reviewed
      • Protein homology detection using string alignment kernels
        Hiroto Saigo; Jean-Philippe Vert; Nobuhisa Ueda; Tatsuya Akutsu
        Bioinformatics, 22 Jul. 2004, Peer-reviewed
      • KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains
        KF Aoki; A Yamaguchi; N Ueda; T Akutsu; H Mamitsuka; S Goto; M Kanehisa
        NUCLEIC ACIDS RESEARCH, Jul. 2004, Peer-reviewed
      • Optimizing substitution matrices by separating score distributions.
        Yuichiro Hourai; Tatsuya Akutsu; Yutaka Akiyama
        Bioinform., 2004
      • Managing and analyzing carbohydrate data
        Kiyoko F. Aoki; Nobuhisa Ueda; Atsuko Yamaguchi; Tatsuya Akutsu; Minoru Kanehisa; Hiroshi Mamitsuka
        SIGMOD Record, 2004, Peer-reviewed
      • Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model
        T Akutsu; S Kuhara; O Maruyama; S Miyano
        THEORETICAL COMPUTER SCIENCE, Apr. 2003, Peer-reviewed
      • Inferring qualitative relations in genetic networks and metabolic pathways
        Tatsuya Akutsu; Satoru Miyano; Satoru Kuhara
        Bioinformatics, 2000, Peer-reviewed
      • On the approximation of protein threading
        Tatsuya Akutsu; Satoru Miyano
        Theoretical Computer Science, 17 Jan. 1999, Peer-reviewed
      • Distribution of Distances and Triangles in Point Sets and Its Application to Largest Common Point Set Problems
        Tatsuya Akutsu; Hisao Tamaki; Takeshi Tokuyama
        Proc. 13th ACM Symposium on Computational Geometry, Jun. 1997, Peer-reviewed
      • Protein structure alignment using dynamic programming and iterative improvement
        T Akutsu
        IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, Dec. 1996, Peer-reviewed
      • On PAC learnability of functional dependencies
        Tatsuya Akutsu; Atsuhiro Takasu
        New Generation Computing, Dec. 1994, Peer-reviewed

      Misc.

      • Bioinformatics: An Overview.
        Tatsuya Akutsu
        情報の科学と技術, Jun. 2021, Invited, Lead author, Last author, Corresponding author
      • Identifying gene co-expression networks and mutually exclusive gene sets from scRNA-seq data
        Natsu Nakajima; Tatsuya Akutsu; Ryuichiro Nakato
        細胞, Nov. 2020, Invited
      • Analysis of Boolean Networks and Boolean Models of Metabolic Networks
        Tatsuya Akutsu
        Application of Omics, AI and Blockchain in Bioinformatics Research (Book Chapter), Nov. 2019, Invited, Lead author, Last author, Corresponding author
      • On the minimum number of genes required for discriminating steady states under a Boolean model
        Cheng Xiaoqing; Tamura Takeyuki; Ching Wai-Ki; Akutsu Tatsuya
        情報処理学会第51回バイオ情報学研究会, Sep. 2017
      • A short review of methods for Caspase cleavage site prediction.
        情報処理学会第51回バイオ情報学研究会, Sep. 2017
      • 最小支配集合に基づく有向生体ネットワーク解析のための高速アルゴリズム
        石塚雅之; 阿久津達也; ナチェルホセ
        情報処理学会バイオ情報学研究会, Jun. 2017
      • 数理と人工知能技術によるゲノム情報と化学情報の解析
        阿久津達也
        海洋化学研究, 12 Nov. 2016
      • Exact Identification of the Structure of a Probabilistic Boolean Network from Samples
        Xiaoqing Cheng; Tomoya Mori; Yushan Qiu; Wai-Ki Ching; Tatsuya Akutsu
        IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, Nov. 2016
      • Enumerating Naphthalene Isomers of Tree-like Chemical Graphs.
        Fei He; Akiyoshi Hanai; NAGAMOCHI Hiroshi; Tatsuya Akutsu
        BIOINFORMATICS, Feb. 2016, Peer-reviewed
      • 文字列データの統計的クラスタリングのためのLaplace様混合モデルとEMアルゴリズムの理論
        小谷野仁; 林田守広; 阿久津達也
        日本応用数理学会年会講演予稿集(CD-ROM), 02 Sep. 2015
      • 根付き順序木の圧縮における分割型文法とオイラー文字列との比較
        劉立偉; 森智弥; 趙楊; 林田守広; 阿久津達也
        電子情報通信学会技術研究報告, 16 Jun. 2015
      • String Clustering Based on a Laplace-like Mixture and EM Algorithm on a Set of Strings
        小谷野仁; 林田守広; 阿久津達也
        電子情報通信学会技術研究報告, 16 Jun. 2015
      • Network Completion for Static Gene Expression Data
        Natsu Nakajima; Tatsuya Akutsu
        IPSJ SIG technical reports, 13 Mar. 2015
      • タンパク質ドメイン構成に基づくプロテオーム圧縮
        林田守広; 阮佩穎; 阿久津達也
        研究報告数理モデル化と問題解決(MPS), 18 Sep. 2014
      • A-008 On Observability of Steady States in a Boolean Network
        Akutsu Tatsuya; Tamura Takeyuki
        情報科学技術フォーラム講演論文集, 19 Aug. 2014
      • Prediction of Heterotrimeric Protein Complexes by Two-phase Learning Using Neighboring Kernels
        RUAN PEIYING; HAYASHIDA MORIHIRO; MARUYAMA OSAMU; AKUTSU TATSUYA
        電子情報通信学会技術研究報告 = IEICE technical report : 信学技報, 25 Jun. 2014
      • Maximum Margin Classifier Working in a Metric Space of Strings and Its Application to Protein Science
        KOYANO HITOSHI; HAYASHIDA MORIHIRO; AKUTSU TATSUYA
        電子情報通信学会技術研究報告 = IEICE technical report : 信学技報, 25 Jun. 2014
      • Grammar-based Compression for Multiple Trees Using Integer Programming
        ZHAO YANG; HAYASHIDA MORIHIRO; CAO YUE; HWANG JAEWOOK; AKUTSU TATSUYA
        電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習, 18 Jun. 2014
      • Prediction of Heterotrimeric Protein Complexes by Two-phase Learning Using Neighboring Kernels
        Peiying Ruan; Morihiro Hayashida; Osamu Maruyama; Tatsuya Akutsu
        IPSJ SIG Notes, 18 Jun. 2014
      • Prediction of Heterotrimeric Protein Complexes by Two-phase Learning Using Neighboring Kernels
        Peiying Ruan; Morihiro Hayashida; Osamu Maruyama; Tatsuya Akutsu
        IPSJ SIG technical reports, 18 Jun. 2014
      • Grammar-based Compression for Multiple Trees Using Integer Programming
        Yang Zhao; Morihiro Hayashida; Yue Cao; Jaewook Hwang; Tatsuya Akutsu
        IPSJ SIG technical reports, 18 Jun. 2014
      • Maximum Margin Classifier Working in a Metric Space of Strings and Its Application to Protein Science
        Hitoshi Koyano; Morihiro Hayashida; Tatsuya Akutsu
        IPSJ SIG Notes, 18 Jun. 2014
      • Parallelization of Enumerating Tree-like Chemical Compounds by Breadth-first Search Order
        Morihiro Hayashida; Jira Jindalertudomdee; Yang Zhao; Tatsuya Akutsu
        IPSJ SIG Notes, 24 Feb. 2014
      • Algorithms for Finding a Largest Common Subtree of Bounded Degree
        Tatsuya Akutsu; Takeyuki Tamura; Avraham A.Melkman; Atsuhiro Takasu
        IPSJ SIG Notes, 23 Jan. 2014
      • Breadth-first Search Approach to Enumeration of Tree-like Chemical Compounds
        Yang Zhao; Morihiro Hayashida; Jira Jindalertudomdee; Hiroshi Nagamochi; Tatsuya Akutsu
        IPSJ SIG technical reports, 04 Dec. 2013
      • Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions
        Peiying Ruan; Morihiro Hayashida; Osamu Maruyama; Tatsuya Akutsu
        IPSJ SIG technical reports, 04 Dec. 2013
      • Breadth-first Search Approach to Enumeration of Tree-like Chemical Compounds
        Yang Zhao; Morihiro Hayashida; Jira Jindalertudomdee; Hiroshi Nagamochi; Tatsuya Akutsu
        IPSJ SIG Notes, 04 Dec. 2013
      • A Dominating Set Approach to Structural Controllability of Unidirectional Bipartite Networks
        Jose C.Nacher; Tatsuya Akutsu
        IPSJ SIG Notes, 19 Sep. 2013
      • Survival Analysis by Penalized Regression and Matrix Factorization
        Yeuntyng Lai; Morihiro Hayashida; Tatsuya Akutsu
        IPSJ SIG Notes, 19 Sep. 2013
      • Inferring Strengths of Protein-Protein Interactions Using Support Vector Regression
        Yusuke Sakuma; Mayumi Kamada; Morihiro Hayashida; Tatsuya Akutsu
        IPSJ SIG Notes, 15 Jul. 2013
      • Comparison and enumeration of chemical graphs
        Tatsuya Akutsu; Hiroshi Nagamochi
        Computational and Structural Biotechnology Journal, 2013
      • BI-7-5 Discrete Models and Control of Genetic Networks and Metabolic Networks
        Akutsu Tatsuya
        Proceedings of the IEICE General Conference, 06 Mar. 2012
      • Integer programming-based method for grammar-based compression of ordered and unordered trees (特集 「脳科学と知識処理」および一般)
        趙 楊; 林田 守広; 阿久津 達也
        人工知能基本問題研究会, 31 Jul. 2010
      • 高さ制約付き無順序木の高速類似検索アルゴリズムについて
        深川大路; 阿久津達也; 高須淳宏; 安達淳
        情報処理学会全国大会講演論文集, 08 Mar. 2010
      • 2K-1 A fast similarity search algortihm for unordered trees of bounded height
        FUKAGAWA Daiji; AKUTSU Tatsuya; TAKASU Atsuhiro; ADACHI Jun
        全国大会講演論文集, 08 Mar. 2010
      • Approximating Edit Distance of Unordered Trees of Bounded Height
        FUKAGAWA Daiji; AKUTSU Tatsuya; TAKASU Atsuhiro
        IEICE technical report. Theoretical foundations of Computing, 22 Jun. 2009
      • Statistical learning algorithm for tree similarity (特集「知識発見の諸科学への応用」および一般)
        高須 淳宏; 深川 大路; 阿久津 達也
        人工知能基本問題研究会, 17 Sep. 2008
      • 確率モデルに基づく木の類似度のパラメータ学習について
        深川大路; 高須淳宏; 阿久津達也
        情報処理学会全国大会講演論文集, 13 Mar. 2008
      • 2J-3 Learning Tree Similarity Based on a Statistical Model
        Fukagawa Daiji; Takasu Atsuhiro; Akutsu Tatsuya
        全国大会講演論文集, 13 Mar. 2008
      • Recent progress on the analysis of power-law features in complex cellular networks
        J. C. Nacher; T. Akutsu
        Cell Biochemistry and Biophysics, Sep. 2007
      • タンパク質間相互作用強度の計算機による予測法 (タンパク質間相互作用)
        林田 守広; 阿久津 達也
        生体の科学, Sep. 2007
      • Enumerating tree-like chemical structures from feature vector
        H. Fujiwara; L. Zhao; Hiroshi Nagamochi; T. Akutsu; W. Jiexun
        2007 Korea-Japan Joint Workshop on Algorithms and Computation, pp. 48-55, 2007, Peer-reviewed
      • A novel clustering method for analysis of biological networks using maximal components of graphs
        HAYASHIDA Morihiro; AKUTSU Tatsuya; NAGAMOCHI Hiroshi
        IPSJ SIG technical reports, 15 Sep. 2006
      • Approximating Tree Edit Distance Through String Edit Distance
        AKUTSU Tatsuya; FUKAGAWA Daiji; TAKASU Atsuhiro
        IEICE technical report. Theoretical foundations of Computing, 17 May 2006
      • Scale-free mixing in protein domain networks
        NACHER Jose C; HAYASHIDA Morihiro; AKUTSU Tatsuya
        IPSJ SIG technical reports, 10 Feb. 2006
      • 生物情報ネットワークの構造およびダイナミクス解析 (ゲノムから生命システムへ) -- (ゲノムから情報科学)
        阿久津 達也; 落合 友四郎; Nacher Jose C.
        蛋白質核酸酵素, Dec. 2005
      • On the Complexity of Inferring a Graph from Path Frequency
        AKUTSU Tatsuya; FUKAGAWA Daiji
        電子情報通信学会技術研究報告. COMP, コンピュテーション, 11 Apr. 2005
      • Profile Alignment with Constraints
        AKUTSU Tatsuya; HAYASHIDA Morihiro; TOMITA Etsuji; SUZUKI Jun'ichi; HORIMOTO Katsuhisa
        IEICE technical report. Theoretical foundations of Computing, 22 Jan. 2004
      • Performance Analysis of a Greedy Algorithm for Inferring Boolean Functions
        FUKAGAWA Daiji; AKUTSU Tatsuya
        IEICE technical report. Theoretical foundations of Computing, 18 Apr. 2003
      • 学生としての知識工学者--適切な質問を行うためのメタ認識論的基礎 (知識のエンジニアリング--エキスパ-ト・システムは知能を持つか<特集>)
        Clancy William J.; 阿久津 達也; 高須 淳宏
        現代思想, Apr. 1989

      Presentations

      • On the Compressive Power of Boolean Threshold Autoencoders
        Tatsuya Akutsu
        The 1st Online Conference on Algorithms, 27 Sep. 2021, Invited
      • Control and Observation of Boolean Networks when Targets are Restricted to Attractors
        Tatsuya Akutsu
        Modeling and Control of Boolean Dynamical Systems (Workshop in European Control Conference 2021), 29 Jun. 2021, Invited
      • Graph Theoretic Approaches to Analysis and Control of Biological Networks
        Tatsuya Akutsu
        2021 IEEE the 9th International Conference on Bioinformatics and Computational Biology, 21 May 2021, Invited
      • A New Integer Linear Programming Formulation to the Inverse QSAR/QSPR for Acyclic Chemical Compounds Using Skeleton Trees
        Fan Zhang; Jianshen Zhu; Rachaya Chiewvanichakorn; Aleksandar Shurbevski; Hiroshi Nagamochi; Tatsuya Akutsu
        33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 24 Sep. 2020
      • A Novel Method for the Inverse QSAR/QSPR based on Artificial Neural Networks and Mixed Integer Linear Programming with Guaranteed Admissibility
        Naveed Ahmed AzamRachaya Chiewvanichakorn; Fan Zhang; Aleksandar Shurbevski; Hiroshi Nagamochi; Tatsuya Akutsu
        13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020), 24 Feb. 2020
      • Breast cancer subtype by imbalanced omics data through a deep learning fusion model
        J. Zeng; H. Cai; T. Akutsu
        10th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2020), 21 Jan. 2020
      • Procleave: A Bioinformatic Approach for Protease-specific Substrate Cleavage Site Prediction by Combining Sequence and Structural Information
        Fuyi Li; Tatsuya Akutsu; Jian Li; Jiangning Song
        10h International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB2020), 21 Jan. 2020
      • A method for the inverse QSAR/QSPR based on artificial neural networks and mixed integer linear programming
        R. ChiewvanichakornC. Wang; Z. Zhang; A. Shurbevski; H. Nagamochi; T. Akutsu
        10th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2020), 20 Jan. 2020
      • Boolean Network-Based Approaches towards Precisions Medicine
        Tatsuya Akutsu
        Workshop on Precision Network Medicine in the era of big data! (ICSB 2019), 31 Oct. 2019, Invited
      • 生体ネットワーク制御の ための数理モデル
        阿久津 達也
        生命情報科学若手の会 第11回研究会, 19 Oct. 2019, Invited
      • Boolean Network-based Approaches for Controlling Genetic Networks and Metabolic Networks
        Tatsuya Akutsu
        International Symposium on the Genetics of Industrial Microorganisms (GIM 2019), 09 Sep. 2019, Invited
      • Python と Scikit-learn によるバイオインフォマティクスデータ解析
        阿久津 達也
        データサイエンススクール 2019 -京都大学データサイエンス教育公開ワークショップ-, 02 Aug. 2019, Invited
      • Graph theoretic approaches to controllability of biological networks
        Tatsuya Akutsu
        Workshop on Bioinformatics and Data Analysis, 15 Jun. 2019, Invited
      • A Method for Analyzing Single Cell Expression Data Based on PCA, Gaussian Mixture Model, and Kullback–Leibler Divergence
        Tatsuya Akutsu
        Japan-Germany International Workshop 2019-1 The Human Cell Type Authentication Initiative, 15 May 2019, Invited
      • 細胞種情報解析における数理モデル概説
        阿久津 達也
        第1回 幹細胞情報学イニシアチブ研究会, 10 May 2019, Invited
      • A mixed integer linear programming formulation to artificial neural networks
        Tatsuya Akutsu; Hiroshi Nagamochi
        2nd International Conference on Information Science and System, 17 Mar. 2019
      • 確率ブーリアンネットワークの部分例の出現頻度からの同定可能性について
        阿久津 達也
        第109回人工知能基本問題研究会, 14 Mar. 2019
      • バイオインフォマティクスにおけるデータサイエンス
        阿久津 達也
        Data Science Spring School 2019, 27 Feb. 2019
      • Integration and Analysis of Heterogeneous Biological Data via Convolutional Neural Networks and Matrix Factorization
        Tatsuya Akutsu
        9th International Conference on Bioscience, Biochemistry and Bioinformatics, 08 Jan. 2019, Invited
      • Algorithms for Analysis and Control of Boolean Networks
        阿久津 達也
        5th International Conference on Algorithms for Computational Biology, 25 Jun. 2018, Invited
      • Minimum Dominating Set-based Approaches for Analyzing and Controlling Biological Networks
        Tatsuya Akutsu
        2016 Biotech and Pharmaceutical Service Platform - Biological Network Analysis Conference, 04 Nov. 2016
      • Minimum Dominating Set-Based Approaches for Controlling and Analyzing Biological Networks
        Tatsuya Akutsu
        The 2016 (26th) Annual Meeting of the Japanese Society for Mathematical Biology, 07 Sep. 2016
      • Minimum Dominating Set-Based Approaches for Controlling and Analyzing Biological Networks
        Tatsuya Akutsu
        Controlling Complex Network Systems in Biology (Workshop), 05 Sep. 2016
      • Extensions and Applications of the Minimum Dominating Set-Based Approach to Controllability of Complex Networks
        Tatsuya Akutsu
        Controlling Complex Networks (Satellite Symposium of International School and Conference on Network Science), 30 May 2016

      Books and Other Publications

      • バイオインフォマティクス : Pythonによる実践レシピ
        阿久津, 達也; 竹本, 和広(共訳)
        朝倉書店, Aug. 2020
      • Algorithms for Analysis, Inference, and Control of Boolean Networks
        Tatsuya Akutsu, Single work, 216 pages
        World Scientific, Apr. 2018, Not refereed
      • Sequence alignment algorithms: Applications to glycans and trees and tree-like structures
        Akutsu T
        Handbook of Chemoinformatics Algorithms , , 363-381, 2010, Not refereed
      • バイオインフォマティクス ー配列データ解析と構造予測ー
        阿久津 達也
        朝倉書店, May 2007, Not refereed
      • バイオインフォマティクスの数理とアルゴリズム
        丸山 修; 阿久津 達也, Joint work
        共立出版, Feb. 2007, Not refereed
      • バイオインフォマティクス ―確率モデルによる遺伝子配列解析ー
        阿久津 達也; 浅井 潔; 矢田 哲士, Joint translation
        Mar. 2001, Not refereed

      Awards

      • 05 Sep. 2014
        FIT(情報科学技術フォーラム), FIT奨励賞
      • 26 Oct. 2014
        InTech (Open Access Publisher),, Intech Award Diploma
      • 18 Dec. 2014
        情報処理学会 バイオ情報学研究会, SIGBIO功労賞
      • 16 Dec. 2009
        The 20th International Conference on Genome Informatics, 2009 Oxford Journals - JSBi Bioinformatics Prize (Best Poster Award)
      • 2006
        情報処理学会 数理モデル化と問題解決研究会, SIGMPS功労賞
      • 15 Dec. 2004
        15th International Conference on Genome Informatics, 2004 Oxford University Press Bioinformatics Prize (Best Poster Award)
      • 03 Jun. 2016
        Information Processing Society of Japan, Fellow, Information Processing Society of Japan
      • 25 Sep. 2020
        The 33th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems, Best Theory Paper Award

      External funds: Kakenhi

      • Analysis and Applications of Discrete Preimage Problems
        Grant-in-Aid for Scientific Research (A)
        Medium-sized Section 61:Human informatics and related fields
        Kyoto University
        阿久津 達也
        From 01 Apr. 2018, To 31 Mar. 2023, Granted
        逆問題;グラフアルゴリズム;特徴ベクトル;ニューラルネットワーク;バイオインフォマティクス
      • Pan-cancer module and network analysis for identifying dominating subnetworks across hu man cancers
        Grant-in-Aid for JSPS Fellows
        Kyoto University
        From 10 Nov. 2017, To 31 Mar. 2020, Project Closed
        汎がんモジュール;タンパク質相互作用ネットワーク;遺伝子発現量;遺伝子変異;遺伝子進化;深層学習;ブーリアンネットワーク
      • データ融合によるタンパク質切断解析および疾患との関連性発見
        Grant-in-Aid for JSPS Fellows
        Kyoto University
        From 09 Nov. 2015, To 31 Mar. 2017, Project Closed
        caspase;protease;data fution;bioinformatics;Protein cleavage;Data fusion;Machine learning,
      • Structurally Robust Control of Complex Networks
        Grant-in-Aid for Challenging Exploratory Research
        Kyoto University
        Tatsuya Akutsu
        From 01 Apr. 2014, To 31 Mar. 2017, Project Closed
        複雑ネットワーク;スケールフリーネットワーク;ブーリアンネットワーク;遺伝子ネットワーク;最小支配集合;構造的可制御性;ロバストネス
      • An Approach to Novel Structure Design by Combining Discrete Methods and Statistical Methods
        Grant-in-Aid for Scientific Research (A)
        Kyoto University
        Tatsuya AKUTSU
        From 01 Apr. 2014, To 31 Mar. 2019, Project Closed
        ケモインフォマティクス;構造列挙;グラフアルゴリズム;カーネル法;生物情報ネットワーク;化学構造;特徴ベクトル;ヶモインフォマティクス;グラフ列挙
      • Discrete Model-Based Methods for Control of Complex BiologicalSyetems
        Grant-in-Aid for Challenging Exploratory Research
        Kyoto University
        Tatsuya AKUTSU
        From 01 Apr. 2010, To 31 Mar. 2013, Project Closed
        複雑生体ネットワーク;ブーリアンネットワーク;スケールフリーネットワーク;遺伝子ネットワーク;代謝ネットワーク;制御理論;構造的可制御性;代謝流束解析;線形離散時間システム;確率ブーリアンネットワーク;制御;アトラクター;NP完全;Canalyzing関数
      • An Approach to Novel Structural Design by Combining Discrete Methods and Kernel Methods
        Grant-in-Aid for Scientific Research (A)
        Kyoto University
        Tatsuya AKUTSU
        From 01 Apr. 2010, To 31 Mar. 2015, Project Closed
        特徴ベクトル;カーネル法;化学構造;グラフ理論;立体異性体;構造列挙;木構造;異性体;ベンゼン環;構造比較;外平面的グラフ
      • 複雑生体構造のデータ圧縮を通じた発生原理の解明
        Grant-in-Aid for Challenging Exploratory Research
        Kyoto University
        阿久津 達也
        Project Closed
        L-system;グラフ文法;文法圧縮;複雑系;代謝ネットワーク;木構造;文脈自由文法;発生;オイラー文字列;文字列圧縮;生体構造;データ圧縮;編集距離;無順序木;グラフ構造;Eulerツアー;画像圧縮;タンパク質立体構造
      • New Methods for Designing Chemical Structures Using Graph Theory and Kernel Methods
        Grant-in-Aid for Scientific Research (A)
        Kyoto University
        Tatsuya AKUTSU
        Project Closed
        カーネル法;グラフアルゴリズム;特徴ベクトル;サポートベクターマシン;列挙アルゴリズム;動的計画法;ケモインフォマティクス;グラフ理論;RNA二次構造;タンパク質立体構造;化学構造;立体異性体;木構造;外平面的グラフ;構造活性相関;光学異性体;外平面グラフ
      • Analysis of Structure and Dynamics of Biological Information Networks
        Grant-in-Aid for Scientific Research on Priority Areas
        Biological Sciences
        Kyoto University
        Tatsuya AKUTSU
        Project Closed
        遺伝子ネットワーク;代謝ネットワーク;タンパク質相互作用;スケールフリーネットワーク;タンパク質ドメイン;遺伝子発現;大規模進化動力学モデル;生物情報ネットワーク;スケールフリー;進化動力学モデル;緑膿菌;ブーリアンネットワーク;形態形成;神経細胞;遺伝子発現データ;オペロン;ネットワーク定常状態;概日リズム;バイオインフォマティクス;システム生物学;べき乗則;遺伝子間相互作用
      • Pattern Matching Methods for Structured Data in Bioinformatics
        Grant-in-Aid for Scientific Research (B)
        Kyoto University
        Tatsuya AKUTSU
        Project Closed
        配列アラインメント;三角不等式;編集距離;オイラー文字列;カーネル法;サポートベクタマシン;化学構造;細胞内局在部位予測;特徴ベクトル;木構造;平面的グラフ;クラスタリング;タンパク質配列;生物情報ネットワーク;グラフカーネル;アルゴリズム;タンパク質細胞内局在部位予測;サポートベクターマシン;パターンマッチング;モチーフ抽出;国際情報交換;フランス;位置特異的スコア行列;最大共通部分点集合;糖鎖, sequence alignment;triangle inequality;edit distance;Euler string;kernel method;support vector machine;chemical structure;subcellular location prediction
      • Information Scientific Foundations of Knowledge Discovery from Proteome Data
        Grant-in-Aid for Scientific Research (B)
        The University of Tokyo
        Satoru MIYANO
        Project Closed
        タンパク質ネットワーク;遺伝子ネットワーク;タンパク質相互作用情報;タンパク質-RNA相互作用予測;パスウェイモデリング;シミュレーション;タンパク質相互作用;マイクロアレイ解析;パスウェイシミュレーション, protein network;gene network;protein-protein interaction;protein-RNA interaction prediction;pathway modeling;simulation
      • Algorithms for Extraction of Common Patterns from Data in Bioinformatics
        Grant-in-Aid for Scientific Research (C)
        Kyoto University
        Tatsuya AKUTSU
        Project Closed
        バイオインフォマティクス;パターンマッチング;配列モチーフ;アルゴリズム;カーネル法;位置依存スコア行列;局所アライメント;サポートベクタマシン;ローカルアライメント;ホモロジー検索;点集合;合同性判定;最大共通部分点集合;近似マッチング;モチーフ抽出;最大クリーク;電気泳動;スポットマッチング;構造アライメント;GIBBSサンプリング;相対エントロピー;ローカルサーチ, Bioinformatics;Pattern matching;Sequence motif;Algorithms;Kernel method;Position specific score matrix;Local alignment
      • Foundations of Computational Knowledge Discovery from cDNA Microarray Data
        Grant-in-Aid for Scientific Research (B)
        The University of Tokyo
        Satoru MIYANO
        Project Closed
        遺伝子ネットワーク;知識発見;質的ネットワーク;ブーリンアンネットワーク;マイクロアレイ;ハイブリッドペトリネット;システムバイオロジー;学習;ブーリアンネットワーク, Gene network;Knowledge discovery;Qualitative network;Boolean network;Microarray;Hybrid Petri net;Systems biology;Computational learning
      • Construction and Retrieval of Highly Integrated Biological Databases
        Grant-in-Aid for Scientific Research on Priority Areas
        Biological Sciences
        Kyoto University
        Susumu GOTO
        Project Closed
        データベース;バイオインフォマティクス;オントロジー;アルゴリズム;分子間相互作用;反応ネットワーク;グリッド;ネットワークトポロジー;化合物構造比較;糖鎖構造データベース;グラフトポロジー;統合データベース;タンパク質立体構造予測;文献からの知識抽出;タンパク質間相互作用予測;グリッドコンピューティング;分子生物学データベース;酵素反応;グラフ比較;相関クラスタ;経路探索;アミノ酸配列類似度データ;リンク情報;相関ルール発見手法;ゲノムデータベース;知識抽出;マイクロアレイ発現データ, Database;Bioinformatics;Ontology;Algorithm;Molecular interaction;Reaction network;GRID;Network topology
      • Knowledge Discovery from Genome Databases
        Grant-in-Aid for Scientific Research on Priority Areas
        Biological Sciences
        University of Tokyo
        Shinichi MORISHITA
        Project Closed
        バイオインフォマティクス;ゲノム解読;siRNA;転写開始点;比較ゲノム;表現型;フェノーム;顕微鏡画像解析;遺伝子予測;ゲノムアノテーション;RNAi;遺伝子発現量解析;ゲノム配列解読;ゲノム解析ソフトウエア;DNAチップ;オリゴマ設計;ゲノム情報;アルゴリズム;データマイニング;ヒトゲノム;アラインメント;アミノ酸モチーフ;データベース;ゲノム, Bioinformatics;Genome Sequencing;siRNA;Transcription Start Site Analysis;Comparative Genomics;Phenome;Image Processing of Micrographs
      • 非線形の歪みに対応可能な幾何図形のマッチング・アルゴリズム
        Grant-in-Aid for Encouragement of Young Scientists (A)
        The University of Tokyo
        阿久津 達也
        Project Closed
        計算幾何学;パターンマッチング;幾何マッチング;アルゴリズム;電気泳動;DNAマイクロアレイ
      • Development of Data Mining System Using Binary Decision Diagrams for Knowledge Representation
        Grant-in-Aid for Scientific Research (B)
        The University of Tokyo
        Satoru MIYANO
        Project Closed
        二分決定グラフ;学習;知識発見;パターンマッチングアルゴリズム;データマイニング;計算量;情報量;ゲノム;データマインイング;ゲノム情報, binary decision diagram;learning;knowledge discovery;pattern matching algorithm;data mining;computational complexity;entropy;genome
      • Biological Knowledge Based on Genome Information
        Grant-in-Aid for Scientific Research on Priority Areas (A)
        KYOTO UNIVERSITY
        Minoru KANEHISA
        Project Closed
        ゲノム解析;遺伝子機能予測;タンパク質立体構造予測;データベース;ネットワーク;分子間相互作用;パスウェイ;遺伝子疾患;配列解析, Genome analysis;Gene function prediction;Protein structure prediction;Database;Network;Molecular interactions;Pathway;Genetic diseases
      • Parallel and Distributed Computing and its Applications
        Grant-in-Aid for international Scientific Research
        Gunma University, Faculty of Engineering
        Yoshihide IGARASHI
        Project Closed
        並列;分散;アルゴリズム;計算機;半導体;デバイス;通信;同期;並列・分散処理;並列オペレーティングシステム;並列・分散アルゴリズム;耐故障性;VLSIレイアウト;AND-EXOR論理式;遺伝情報解析;デバイスシミュレーション, parallel;distribution;algorithm;computer;semi-conductor;device;communication;synchronization;fault-tolerant
      • 離散原像問題の深化と展開
        Grant-in-Aid for Scientific Research (A)
        Medium-sized Section 61:Human informatics and related fields
        Kyoto University
        阿久津 達也
        From 01 Apr. 2022, To 31 Mar. 2027, Adopted
      list
        Last Updated :2022/05/14

        Education

        Teaching subject(s)

        • From Apr. 2011, To Mar. 2012
          Advanced Study in IST I
          Year-long, 情報学研究科
        • From Apr. 2011, To Mar. 2012
          Advanced Study in IST II
          Year-long, 情報学研究科
        • From Apr. 2011, To Mar. 2012
          知能情報学特殊研究1
          Year-long, 情報学研究科
        • From Apr. 2011, To Mar. 2012
          知能情報学特殊研究2
          Year-long, 情報学研究科
        • From Apr. 2011, To Mar. 2012
          生命情報学
          Fall, 工学部
        • From Apr. 2011, To Mar. 2012
          知能情報学特別セミナー
          Year-long, 情報学研究科
        • From Apr. 2011, To Mar. 2012
          生命情報学特別セミナー
          Fall, 情報学研究科
        • From Apr. 2011, To Mar. 2012
          System Bioinformatics
          Fall, 全学共通科目
        • From Apr. 2011, To Mar. 2012
          Introduction to Bioinformatics
          Spring, 全学共通科目
        • From Apr. 2011, To Mar. 2012
          生命情報学基礎論
          Spring, 情報学研究科
        • From Apr. 2012, To Mar. 2013
          Bioinformatics
          Fall, 全学共通科目
        • From Apr. 2012, To Mar. 2013
          Introduction to Computational Systems Bioinformatics
          Fall, 工学部
        • From Apr. 2012, To Mar. 2013
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2012, To Mar. 2013
          Advanced Seminar on Gene Informatics
          Fall, 情報学研究科
        • From Apr. 2012, To Mar. 2013
          Advanced Seminar on Intelligence Science and Technology
          Year-long, 情報学研究科
        • From Apr. 2012, To Mar. 2013
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2012, To Mar. 2013
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2013, To Mar. 2014
          Introduction to Computational Systems Bioinformatics
          Fall, 工学部
        • From Apr. 2013, To Mar. 2014
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2013, To Mar. 2014
          Advanced Study in Intelligence Science and Technology I
          Spring, 情報学研究科
        • From Apr. 2013, To Mar. 2014
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2013, To Mar. 2014
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2013, To Mar. 2014
          Advanced Seminar on Intelligence Science and Technology
          Year-long, 情報学研究科
        • From Apr. 2013, To Mar. 2014
          Advanced Seminar on Gene Informatics
          Fall, 情報学研究科
        • From Apr. 2013, To Mar. 2014
          Bioinformatics
          Fall, 全学共通科目
        • From Apr. 2014, To Mar. 2015
          Introduction to Computational Systems Bioinformatics
          Fall, 工学部
        • From Apr. 2014, To Mar. 2015
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2014, To Mar. 2015
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2014, To Mar. 2015
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2014, To Mar. 2015
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2014, To Mar. 2015
          Advanced Seminar on Intelligence Science and Technology
          Year-long, 情報学研究科
        • From Apr. 2014, To Mar. 2015
          Advanced Seminar on Gene Informatics
          Fall, 情報学研究科
        • From Apr. 2014, To Mar. 2015
          Bioinformatics
          Fall, 全学共通科目
        • From Apr. 2014, To Mar. 2015
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2014, To Mar. 2015
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Introduction to Computational Systems Bioinformatics
          Fall, 工学部
        • From Apr. 2015, To Mar. 2016
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Seminar on Gene Informatics
          Fall, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Seminar on Intelligence Science and Technology
          Year-long, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Study in Intelligence Science and Technology II
          Spring, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2015, To Mar. 2016
          Introduction to Computational Science
          Fall, 全学共通科目
        • From Apr. 2016, To Mar. 2017
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Introduction to Computational Systems Bioinformatics
          Fall, 工学部
        • From Apr. 2016, To Mar. 2017
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Advanced Seminar on Gene Informatics
          Fall, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Bioinformatics, Adv.
          Fall, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Advanced Seminar on Intelligence Science and Technology
          Year-long, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2016, To Mar. 2017
          Introduction to Computational Science
          Fall, 全学共通科目
        • From Apr. 2017, To Mar. 2018
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Introduction to Computational Systems Bioinformatics
          Fall, 工学部
        • From Apr. 2017, To Mar. 2018
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Advanced Seminar on Gene Informatics
          Fall, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Bioinformatics, Adv.
          Fall, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Advanced Seminar on Intelligence Science and Technology
          Year-long, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Advanced Study in Intelligence Science and Technology II
          Year-long, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Advanced Study in Intelligence Science and Technology I
          Year-long, 情報学研究科
        • From Apr. 2017, To Mar. 2018
          Introduction to Computational Science
          Spring, 全学共通科目
        • From Apr. 2018, To Mar. 2019
          Introduction to Computational Systems Bioinformatics
          Spring, 工学部
        • From Apr. 2018, To Mar. 2019
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2018, To Mar. 2019
          Bioinformatics, Adv.
          Fall, 情報学研究科
        • From Apr. 2019, To Mar. 2020
          Introduction to Computational Systems Bioinformatics
          Spring, 工学部
        • From Apr. 2019, To Mar. 2020
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2019, To Mar. 2020
          Bioinformatics, Adv.
          Fall, 情報学研究科
        • From Apr. 2020, To Mar. 2021
          Introduction to Computational Systems Bioinformatics
          Spring, 工学部
        • From Apr. 2020, To Mar. 2021
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2020, To Mar. 2021
          Bioinformatics, Adv.
          Fall, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology III
          Fall, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology II
          Spring, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology I
          Spring, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology IV
          Fall, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Introduction to Computational Systems Bioinformatics
          Spring, 工学部
        • From Apr. 2021, To Mar. 2022
          Introduction to Bioinformatics
          Spring, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Bioinformatics, Adv.
          Fall, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology III
          Fall, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology II
          Spring, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology I
          Spring, 情報学研究科
        • From Apr. 2021, To Mar. 2022
          Seminar on Intelligence Science and Technology IV
          Fall, 情報学研究科
        list
          Last Updated :2022/05/14

          Administration

          School management (title, position)

          • From 01 Apr. 2013, To 31 Mar. 2015
            化学研究所附属バイオインフォマティクスセンター長
          • From 01 Oct. 2014, To 31 Mar. 2018
            大学評価委員会点検・評価実行委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2019
            化学研究所附属バイオインフォマティクスセンター長

          Faculty management (title, position)

          • From 01 Apr. 2006, To 31 Mar. 2008
            学術情報メディアセンター全国共同利用運営委員会 委員
          • From 01 Apr. 2011
            化学研究所ゲノムネット推進室運営委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所運営委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所建物管理委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所自己点検評価委員会 委員
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所情報システム技術委員会 委員長
          • From 01 Apr. 2013, To 31 Mar. 2014
            化学研究所情報セキュリティ委員会 委員
          • From 01 Jul. 2013, To 30 Jun. 2015
            研究用計算機専門委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所運営委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所建物管理委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所自己点検評価委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所情報システム技術委員会 委員
          • From 01 Apr. 2014, To 31 Mar. 2015
            化学研究所情報セキュリティ委員会 委員長
          • From 01 Apr. 2014, To 31 Mar. 2016
            学術情報メディアセンター全国共同利用運営委員会 委員
          • From 01 Apr. 2015, To 31 Mar. 2017
            化学研究所ゲノムネット推進室運営委員会 委員
          • From 01 Apr. 2015, To 31 Mar. 2016
            化学研究所建物管理委員会 委員
          • From 01 Apr. 2015, To 31 Mar. 2016
            化学研究所情報システム技術委員会 委員長
          • From 01 Apr. 2015, To 31 Mar. 2016
            化学研究所情報セキュリティ委員会 副委員長
          • From 01 Jul. 2015, To 31 Mar. 2018
            研究用計算機専門委員会 委員
          • From 01 Apr. 2016, To 31 Mar. 2017
            化学研究所講演委員会 委員長
          • From 01 Apr. 2016, To 31 Mar. 2017
            化学研究所情報システム技術委員会 委員長
          • From 01 Apr. 2016, To 31 Mar. 2017
            化学研究所情報セキュリティ委員会 副委員長
          • From 01 Apr. 2016, To 31 Mar. 2017
            化学研究所設備運営委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2019
            化学研究所ゲノムネット推進室運営委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2018
            化学研究所運営委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2018
            化学研究所建物管理委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2018
            化学研究所自己点検評価委員会 委員
          • From 01 Apr. 2017, To 31 Mar. 2018
            化学研究所情報システム技術委員会 委員長
          • From 01 Apr. 2017, To 31 Mar. 2018
            化学研究所情報セキュリティ委員会 副委員長
          • From 01 Apr. 2018, To 31 Mar. 2019
            化学研究所運営委員会 委員
          • From 01 Apr. 2018, To 31 Mar. 2019
            化学研究所自己点検評価委員会 委員
          • From 01 Apr. 2018, To 31 Mar. 2019
            化学研究所情報システム技術委員会 委員長
          • From 01 Apr. 2018, To 31 Mar. 2019
            化学研究所情報セキュリティ委員会 副委員長
          • From 01 Apr. 2019, To 31 Mar. 2020
            化学研究所自己点検評価委員会 委員
          • From 01 Apr. 2019, To 31 Mar. 2020
            化学研究所将来問題・研究活性化委員会 委員
          • From 01 Apr. 2019, To 31 Mar. 2020
            化学研究所情報システム技術委員会 委員長
          • From 01 Apr. 2019, To 31 Mar. 2020
            化学研究所情報セキュリティ委員会 副委員長
          • From 01 Apr. 2020, To 31 Mar. 2022
            化学研究所ゲノムネット推進室運営委員会委員
          • From 01 Apr. 2020, To 31 Mar. 2021
            化学研究所情報システム技術委員会委員長
          • From 01 Apr. 2020, To 31 Mar. 2021
            化学研究所情報セキュリティ委員会副委員長
          • From 01 Apr. 2021, To 31 Mar. 2022
            化学研究所財務委員会委員
          • From 01 Apr. 2021, To 31 Mar. 2022
            化学研究所情報セキュリティ委員会副委員長
          • From 01 Apr. 2021, To 31 Mar. 2022
            化学研究所情報システム技術委員会委員長

          ページ上部へ戻る