Researchers Information System

日本語に切り替えるswitch to english

Takeuchi, Koh

Graduate School of Informatics, Department of Informatics Senior Lecturer/ Junior Associate Professor

Takeuchi, Koh
list
    Last Updated :2025/06/26

    Basic Information

    Faculty

    • 工学部

    Academic Degree

    • 修士(工学)(早稲田大学)
    • 博士(情報学)(京都大学)

    Research History

    • From Oct. 2023, To Present
      Kyoto University, Graduate School of Informatics Department of Intelligence Science and Technology, Senior Lecturer
    • From Feb. 2020, To Sep. 2023
      Kyoto University, Graduate School of Informatics Department of Intelligence Science and Technology, Assistant Professor
    • From Apr. 2011, To Jan. 2020
      NTT, Communication Science Labs., Researcher

    ID,URL

    researchmap URL

    list
      Last Updated :2025/06/26

      Research

      Research Interests

      • Data Mining
      • Machine Learning

      Research Areas

      • Informatics, Intelligent informatics

      Papers

      • Cognitive Biases in Large Language Models: A Survey and Mitigation Experiments.
        Yasuaki Sumita; Koh Takeuchi 0001; Hisashi Kashima
        SAC, 2025
      • Travel Demand Prediction with Application to Commuter Demand Estimation on Urban Railways.
        Yohei Kodama; Yuki Akeyama; Yusuke Miyazaki 0005; Koh Takeuchi 0001
        Companion Proceedings of the ACM on Web Conference 2024, 2024
      • Recovering Population Dynamics from a Single Point Cloud Snapshot.
        Yuki Wakai; Koh Takeuchi 0001; Hisashi Kashima
        Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2024
      • AHP-Powered LLM Reasoning for Multi-Criteria Evaluation of Open-Ended Responses.
        Xiaotian Lu; Jiyi Li; Koh Takeuchi 0001; Hisashi Kashima
        Findings of the Association for Computational Linguistics: EMNLP 2024, 2024
      • Evaluating Saliency Explanations in NLP by Crowdsourcing.
        Xiaotian Lu; Jiyi Li; Zhen Wan; Xiaofeng Lin 0001; Koh Takeuchi 0001; Hisashi Kashima
        Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation(LREC/COLING), 2024
      • Estimating counterfactual treatment outcomes over time in complex multi-agent scenarios.
        Keisuke Fujii 0001; Koh Takeuchi 0001; Atsushi Kuribayashi; Naoya Takeishi; Yoshinobu Kawahara; Kazuya Takeda
        CoRR, 2022
      • Scalable individual treatment effect estimator for large graphs.
        Xiaofeng Lin 0001; Han Bao 0002; Yan Cui 0008; Koh Takeuchi 0001; Hisashi Kashima
        Mach. Learn., Jan. 2025
      • Extracting essential structure from data
        Katsuhiko Ishiguro; Koh Takeuchi
        NTT Technical Review, Nov. 2012
      • Imitation networks: Few-shot learning of neural networks from scratch.
        Akisato Kimura; Zoubin Ghahramani; Koh Takeuchi; Tomoharu Iwata; Naonori Ueda
        CoRR, 2018
      • Estimating Treatment Effects Under Heterogeneous Interference.
        Xiaofeng Lin; Guoxi Zhang; Xiaotian Lu; Han Bao 0002; Koh Takeuchi; Hisashi Kashima
        CoRR, 2023
      • Estimating Counterfactual Treatment Outcomes Over Time in Complex Multiagent Scenarios
        Keisuke Fujii; Koh Takeuchi; Atsushi Kuribayashi; Naoya Takeishi; Yoshinobu Kawahara; Kazuya Takeda
        IEEE Transactions on Neural Networks and Learning Systems, 2024
      • Bleeding alert map (BAM): The identification method of the bleeding source in real organs using datasets made on mimicking organs.
        Maina Sogabe; Kaoru Ishikawa; Toshihiro Takamatsu; Koh Takeuchi; Takahiro Kanno; Koji Fujimoto; Tetsuro Miyazaki; Toshihiro Kawase; Toshihiko Sato; Kenji Kawashima
        Array, Sep. 2023
      • Estimating Treatment Effects Under Heterogeneous Interference.
        Xiaofeng Lin; Guoxi Zhang; Xiaotian Lu; Han Bao 0002; Koh Takeuchi; Hisashi Kashima
        ECML/PKDD (1), 2023
      • QTNet: Theory-based Queue Length Prediction for Urban Traffic.
        Ryu Shirakami; Toshiya Kitahara; Koh Takeuchi; Hisashi Kashima
        KDD, 2023
      • Causal Effect Estimation on Hierarchical Spatial Graph Data.
        Koh Takeuchi; Ryo Nishida; Hisashi Kashima; Masaki Onishi
        KDD, 2023
      • Mitigating Voter Attribute Bias for Fair Opinion Aggregation.
        Ryosuke Ueda; Koh Takeuchi; Hisashi Kashima
        AIES, 2023
      • Multiview Representation Learning from Crowdsourced Triplet Comparisons.
        Xiaotian Lu; Jiyi Li; Koh Takeuchi; Hisashi Kashima
        WWW, 2023
      • District Characteristics Analysis with Regional Garbage Amount Estimation Using Vehicle- Mounted Motion Sensors.
        Yasue Kishino; Yoshinari Shirai; Koh Takeuchi; Shin Mizutani; Takayuki Suyama; Futoshi Naya; Naonori Ueda
        ISC2, 2022
      • Mitigating Observation Biases in Crowdsourced Label Aggregation.
        Ryosuke Ueda; Koh Takeuchi; Hisashi Kashima
        ICPR, 2022
      • Estimating counterfactual treatment outcomes over time in multi-vehicle simulation.
        Keisuke Fujii 0001; Koh Takeuchi; Atsushi Kuribayashi; Naoya Takeishi; Yoshinobu Kawahara; Kazuya Takeda
        SIGSPATIAL/GIS, 2022
      • Interpretable Knowledge Tracing: Simple and Efficient Student Modeling with Causal Relations.
        Sein Minn; Jill-Jênn Vie; Koh Takeuchi; Hisashi Kashima; Feida Zhu 0001
        AAAI, 2022
      • Predicting Anesthetic Infusion Events Using Machine Learning
        Naoki Miyaguchi; Koh Takeuchi; Hisashi Kashima; Mizuki Morita; Hiroshi Morimatsu
        Scientific Reports, 19 Nov. 2021, Peer-reviewed
      • Discriminant Dynamic Mode Decomposition for Labeled Spatiotemporal Data Collections.
        Naoya Takeishi; Keisuke Fujii 0001; Koh Takeuchi; Yoshinobu Kawahara
        SIAM J. Appl. Dyn. Syst., 2022
      • Time Series Link Prediction Using NMF.
        Faith W. Mutinda; Atsuhiro Nakashima; Koh Takeuchi; Yuya Sasaki; Makoto Onizuka
        IEEE International Conference on Big Data and Smart Computing, BigComp 2019, Kyoto, Japan, February 27 - March 2, 2019, 2019, Peer-reviewed
      • Non-linear Attributed Graph Clustering by Symmetric NMF with PU Learning.
        Seiji Maekawa; Koh Takeuchi; Makoto Onizuka
        CoRR, 2018, Peer-reviewed
      • Fréchet Kernel for Trajectory Data Analysis.
        Koh Takeuchi; Masaaki Imaizumi; Shunsuke Kanda; Yasuo Tabei; Keisuke Fujii; Ken Yoda; Masakazu Ishihata; Takuya Maekawa
        ACM SIGSPATIAL, 2021, Peer-reviewed, Lead author
      • In-Vehicle Network Attack Detection Across Vehicle Models: A Supervised-Unsupervised Hybrid Approach.
        Shu Nakamura; Koh Takeuchi; Hisashi Kashima; Takeshi Kishikawa; Takashi Ushio; Tomoyuki Haga; Takamitsu Sasaki
        IEEE ITSC, 2021, Peer-reviewed
      • Crowdsourcing Evaluation of Saliency-based XAI Methods.
        Xiaotian Lu; Arseny Tolmachev; Tatsuya Yamamoto; Koh Takeuchi; Seiji Okajima; Tomoyoshi Takebayashi; Koji Maruhashi; Hisashi Kashima
        ECMLPKDD, 2021, Peer-reviewed
      • Inter-domain Multi-relational Link Prediction.
        Luu Huu Phuc; Koh Takeuchi; Seiji Okajima; Arseny Tolmachev; Tomoyoshi Takebayashi; Koji Maruhashi; Hisashi Kashima
        ECMLPKDD, 2021, Peer-reviewed
      • Grab the Reins of Crowds: Estimating the Effects of Crowd Movement Guidance Using Causal Inference.
        Koh Takeuchi; Ryo Nishida; Hisashi Kashima; Masaki Onishi
        AAMAS, 2021, Peer-reviewed, Lead author
      • Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance.
        Yasutoshi Ida; Sekitoshi Kanai; Yasuhiro Fujiwara; Tomoharu Iwata; Koh Takeuchi; Hisashi Kashima
        ICML, 2020, Peer-reviewed
      • Succinct Trit-array Trie for Scalable Trajectory Similarity Search.
        Shunsuke Kanda; Koh Takeuchi; Keisuke Fujii; Yasuo Tabei
        ACM SIGSPATIAL, 2020, Peer-reviewed
      • Simultaneous Link Prediction on Unaligned Networks Using Graph Embedding and Optimal Transport.
        Luu Huu Phuc; Koh Takeuchi; Makoto Yamada; Hisashi Kashima
        IEEE DSAA, 2020, Peer-reviewed
      • Proximity Preserving Nonnegative Matrix Factorization.
        Yuya Ogawa; Koh Takeuchi; Yuya Sasaki 0001; Makoto Onizuka
        J. Inf. Process., 2020, Peer-reviewed
      • New Attributed Graph Clustering by Bridging Attribute and Topology Spaces.
        Seiji Maekawa; Koh Takeuchi; Makoto Onizuka
        J. Inf. Process., 2020, Peer-reviewed
      • 隣接性と構造類似性を考慮したグラフクラスタリング
        小川 裕也; 前川 政司; 竹内 孝; 佐々木 勇和; 鬼塚 真
        Mar. 2019
      • Variational Inference of Penalized Regression with Submodular Functions.
        Koh Takeuchi; Yuichi Yoshida; Yoshinobu Kawahara
        UAI, 2019, Peer-reviewed, Lead author
      • Time Series Link Prediction Using NMF.
        Faith W. Mutinda; Atsuhiro Nakashima; Koh Takeuchi; Yuya Sasaki 0001; Makoto Onizuka
        J. Inf. Process., 2019, Peer-reviewed
      • Accelerating Urban Science by Crowdsensing with Civil Officers.
        Takuro Yonezawa; Koh Takeuchi; Tomotaka Ito; Mina Sakamura; Yasue Kishino; Futoshi Naya; Naonori Ueda; Jin Nakazawa
        Ubicomp, 2018, Peer-reviewed
      • Regional Garbage Amount Estimation and Analysis Using Car-Mounted Motion Sensors.
        Yasue Kishino; Yoshinari Shirai; Koh Takeuchi; Takayuki Suyama; Futoshi Naya; Naonori Ueda
        Ubicomp, 2018, Peer-reviewed
      • Few-shot learning of neural networks from scratch by pseudo example optimization.
        Akisato Kimura; Zoubin Ghahramani; Koh Takeuchi; Tomoharu Iwata; Naonori Ueda
        BMVC, 2018, Peer-reviewed
      • Mobile Network Failure Event Detection and Forecasting With Multiple User Activity Data Sets.
        Motoyuki Oki; Koh Takeuchi; Yukio Uematsu
        IAAI, 2018, Peer-reviewed
      • Scaling Locally Linear Embedding.
        Yasuhiro Fujiwara; Naoki Marumo; Mathieu Blondel; Koh Takeuchi; Hideaki Kim; Tomoharu Iwata; Naonori Ueda
        Proceedings of the 2017 ACM International Conference on Management of Data, 2017
      • Structurally Regularized Non-negative Tensor Factorization for Spatio-Temporal Pattern Discoveries.
        Koh Takeuchi; Yoshinobu Kawahara; Tomoharu Iwata
        Machine Learning and Knowledge Discovery in Databases - European Conference, 2017
      • SVD-Based Screening for the Graphical Lasso.
        Yasuhiro Fujiwara; Naoki Marumo; Mathieu Blondel; Koh Takeuchi; Hideaki Kim; Tomoharu Iwata; Naonori Ueda
        Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence(IJCAI), 2017
      • Autoregressive Tensor Factorization for Spatio-Temporal Predictions.
        Koh Takeuchi; Hisashi Kashima; Naonori Ueda
        2017 IEEE International Conference on Data Mining(ICDM), 2017
      • Datafying city: Detecting and accumulating spatio-temporal events by vehicle-mounted sensors.
        Yasue Kishino; Koh Takeuchi; Yoshinari Shirai; Futoshi Naya; Naonori Ueda
        2017 IEEE International Conference on Big Data (IEEE BigData 2017), 2017
      • Localized Lasso for High-Dimensional Regression.
        Makoto Yamada; Koh Takeuchi; Tomoharu Iwata; John Shawe-Taylor; Samuel Kaski
        Proceedings of the 20th International Conference on Artificial Intelligence and Statistics(AISTATS), 2017
      • Sparse Network Lasso for Local High-dimensional Regression.
        Makoto Yamada; Koh Takeuchi; Tomoharu Iwata; John Shawe-Taylor; Samuel Kaski
        CoRR, 2016
      • Higher Order Fused Regularization for Supervised Learning with Grouped Parameters.
        Koh Takeuchi; Yoshinobu Kawahara; Tomoharu Iwata
        Machine Learning and Knowledge Discovery in Databases - European Conference, 2015
      • Cross-domain recommendation without shared users or items by sharing latent vector distributions.
        Tomoharu Iwata; Koh Takeuchi
        Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics(AISTATS), 2015
      • Non-Negative Multiple Matrix Factorization.
        Koh Takeuchi; Katsuhiko Ishiguro; Akisato Kimura; Hiroshi Sawada
        IJCAI 2013(IJCAI), 2013
      • Non-negative Multiple Tensor Factorization.
        Koh Takeuchi; Ryota Tomioka; Katsuhiko Ishiguro; Akisato Kimura; Hiroshi Sawada
        2013 IEEE 13th International Conference on Data Mining(ICDM), 2013
      • Towards Automatic Image Understanding and Mining via Social Curation.
        Katsuhiko Ishiguro; Akisato Kimura; Koh Takeuchi
        12th IEEE International Conference on Data Mining(ICDM), 2012

      Misc.

      • Deep few-shot learning with pseudo example optimization
        木村昭悟; 木村昭悟; GHAHRAMANI Zoubin; 竹内孝; 岩田具治; 上田修功
        人工知能学会全国大会論文集(CD-ROM), 2018
      • 機械学習を用いたグラフ構造データの解析と応用
        竹内 孝
        人工知能, 01 Mar. 2023
      • 会議報告:The 20th International Conference on Autonomous Agents and Multiagent Systems( AAMAS-2021)
        竹内 孝
        人工知能, 01 Sep. 2021
      • Preliminary Investigation of Unsupervised Segmentation for Animal Locomotion Data using Deep Learning
        TSUJIMOTO Hiroki; TAKEUCHI Koh; KISHINO Yasue; SUZUKI Hirokazu; YODA Ken; KIMURA Koutarou D.; MAEKAWA Takuya; HARA Takahiro
        Proceedings of the Annual Conference of JSAI, Jun. 2020
      • Link Prediction in Chemical Compound Network Under Observation Bias
        乾拓海; 原田将之介; LIU Yang; 竹内孝; 瀧川一学; 山西芳裕; 鹿島久嗣
        人工知能学会全国大会(Web), 2022
      • Model Ensemble for Failure Event Detection using Multiple User Activity Data on the Web
        大木 基至; 竹内 孝; 植松 幸生
        電子情報通信学会技術研究報告 = IEICE technical report : 信学技報, 18 Sep. 2017
      • 特徴的な構造を抽出するデータマイニング技術 (特集 情報と人間を結ぶコミュニケーション科学)
        石黒 勝彦; 竹内 孝
        NTT技術ジャーナル, Sep. 2012
      • Structured regularizer for spatio-temporal matrix completion
        竹内 孝; 河原 吉伸; 岩田 具治
        人工知能基本問題研究会, 27 Mar. 2016
      • Analyzing Picture Book Data with Non-negative Multiple Matrix Factorization : Extended Abstract
        竹内 孝; 石黒 勝彦; 小林 哲生
        人工知能学会全国大会論文集, 2014
      • Multiple Matrix Factorization under the Non-negative Constraints and its Applications for Social Media Analysis
        竹内 孝; 石黒 勝彦; 木村 昭悟; 澤田 宏
        情報処理学会論文誌数理モデル化と応用(TOM), 28 Mar. 2014
      • Multiple Matrix Factorization under the Non-negative Constraints
        Koh Takeuchi; Katsuhiko Ishiguro; Akisato Kimura; Hiroshi Sawada
        IPSJ SIG Notes, 16 May 2013
      • sNMF : Stacked Non-negative Matrix Factorization : Its Application For Social Media Analysis
        TAKEUCHI Koh; ISHIGURO Katsuhiko; KIMURA Akisato; SAWADA Hiroshi
        電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning, 31 Oct. 2012

      Media Coverage

      • 住友電工、AIで渋滞予測 京大と開発、物流24年問題に対策
        日本経済新聞, 7面、電子版, 27 Dec. 2023, Paper
      • 交通渋滞を正確に予測するAIを開発警視庁データで学習、1時間先の誤差40メートル以下
        JSTnews, 11月号, NEWS&TOPICS, 紙面・電子版, Nov. 2023, Paper
      • 1時間先の渋滞を正確に予測できる!
        子供の科学, 2023年11月号, 紙面, Nov. 2023, Paper
      • AI使い信号制御、都内の渋滞対策 警視庁が全国初導入
        日本経済新聞, 紙面1面・電子版, 19 Oct. 2023, Paper
      • 交通渋滞の長さを精度良く予測、京大などがAI開発 警視庁のビッグデータで学習
        サイエンスポータル, Yahoo!ニュース、 マイナビニュース、 Lab BRAINS, 電子版, 05 Oct. 2023, Internet
      • 京都大学和住友电工系统开发出可准确预测交通拥堵长度的AI,实现“误差小于40米”的高精度预测
        客观日本, 電子版, 02 Oct. 2023, Internet
      • 渋滞を正確に予測するAI
        現代化学, 2023年10月号, Oct. 2023, Paper
      • Kyoto University and Sumitomo Electric Systems Solutions develop AI for accurate traffic jam prediction: High accuracy mapping with less than 40m of error for one hour in advance
        Science Japan, 電子版, 20 Sep. 2023, Internet
      • 渋滞長を正確に予測するAI、京大と住友電工システムが開発
        科学新聞, 紙面, 25 Aug. 2023, Paper
      • AIで渋滞を精密予測 住友電工系 京大など 実運用へ評価試験
        電気新聞, 紙面, 08 Aug. 2023, Paper
      • 住友電工子会社と京大、渋滞予測の新手法を開発 AIと交通工学で高精度の予測実現
        日刊自動車新聞, 紙面1面・電子版, 08 Aug. 2023, Paper

      External funds: Kakenhi

      • Development of machine learning algorithms based on discrete convex analysis
        Grant-in-Aid for Scientific Research (B)
        Osaka University
        Yoshinobu Kawahara
        From 01 Apr. 2014, To 31 Mar. 2018, Project Closed
        機械学習;組合せ最適化;最適化
      • 自律的に計測・介入を行うχログボットのアルゴリズム開発
        Grant-in-Aid for Transformative Research Areas (A)
        Transformative Research Areas, Section (IV)
        Osaka University
        前川 卓也
        From 10 Sep. 2021, To 31 Mar. 2026, Granted
        階層的生物ナビ学;バイオロギング;行動認識;階層生物ナビ;ユビキタスコンピューティング;動物行動学;機械学習
      list
        Last Updated :2025/06/26

        Education

        Teaching subject(s)

        • From 01 Apr. 2025, To 31 Mar. 2026
          Computer Science Laboratory and Exercise 1
          9138, Spring, Faculty of Engineering, 2
        • From 01 Apr. 2025, To 31 Mar. 2026
          Statistical Learning Theory
          3178, Spring, Graduate School of Informatics, 2
        • From 01 Apr. 2025, To 31 Mar. 2026
          Statistical Learning Theory
          M311, Spring, Institute for Liberal Arts and Sciences, 2
        • From 01 Apr. 2025, To 31 Mar. 2026
          Statistics and Artificial Intelligence
          N817, Spring, Institute for Liberal Arts and Sciences, 2
        • From 01 Apr. 2024, To 31 Mar. 2025
          Computer Science Laboratory and Exercise 1
          9138, Spring, Faculty of Engineering, 2
        • From 01 Apr. 2024, To 31 Mar. 2025
          Statistical Learning Theory
          3178, Spring, Graduate School of Informatics, 2
        • From 01 Apr. 2024, To 31 Mar. 2025
          Statistical Learning Theory
          M311, Spring, Institute for Liberal Arts and Sciences, 2
        • From 01 Apr. 2024, To 31 Mar. 2025
          Statistics and Artificial Intelligence
          N817, Spring, Institute for Liberal Arts and Sciences, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Mathematics in Practice for Computer Science
          9131, Spring, Faculty of Engineering, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Computer Science Laboratory and Exercise 1
          9138, Spring, Faculty of Engineering, 2
        • From 01 Apr. 2023, To 31 Mar. 2024
          Statistical Learning Theory
          M311, Spring, Institute for Liberal Arts and Sciences, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Computer Science Laboratory and Exercise 2
          9022, Fall, Faculty of Engineering, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Statistical Learning Theory
          3178, Spring, Graduate School of Informatics, 2
        • From 01 Apr. 2022, To 31 Mar. 2023
          Computer Science Laboratory and Exercise 1
          9138, Spring, Faculty of Engineering, 2
        • From Apr. 2021, To Mar. 2022
          Computer Science Laboratory and Exercise 1
          Spring, 工学部
        • From Apr. 2021, To Mar. 2022
          Computer Science Laboratory and Exercise 1
          Spring, 工学部
        list
          Last Updated :2025/06/26

          Administration

          Faculty management (title, position)

          • From 01 Apr. 2024, To 31 Mar. 2026
            計算機小委員会
          • From 01 Apr. 2024, To 31 Mar. 2026
            情報セキュリティ作業委員会委員
          • From 01 Apr. 2021, To 31 Mar. 2022
            広報WG委員
          list
            Last Updated :2025/06/26

            Academic, Social Contribution

            Committee Memberships

            • From May 2025, To May 2027
              Board member, The Japanese Society for Artificial Intelligence
            • From 2023
              プログラム委員, 第26回情報論的学習理論ワークショップ (IBIS2023)
            • From 2023
              Local Chair, The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
            • From 2021, To 2023
              Program Committee, The Annual Conference of the Japanese Society for Artificial Intelligence
            • From 2019
              Program Committee, The 22nd information-Based Induction Sciences Workshop
            • From 2016
              Program Comittie, The 19th information-Based Induction Sciences Workshop

            ページ上部へ戻る